Subdividing the superior longitudinal fasciculus using local quantitative MRI

The association fibers of the superior longitudinal fasciculus (SLF) connect parietal and frontal cortical regions in the human brain. The SLF comprises of three distinct sub-bundles, each presenting a different anatomical trajectory, and specific functional roles. Nevertheless, in vivo studies of t...

Full description

Bibliographic Details
Main Authors: Roey Schurr, Ady Zelman, Aviv A. Mezer
Format: Article
Language:English
Published: Elsevier 2020-03-01
Series:NeuroImage
Online Access:http://www.sciencedirect.com/science/article/pii/S1053811919310304
Description
Summary:The association fibers of the superior longitudinal fasciculus (SLF) connect parietal and frontal cortical regions in the human brain. The SLF comprises of three distinct sub-bundles, each presenting a different anatomical trajectory, and specific functional roles. Nevertheless, in vivo studies of the SLF often consider the entire SLF complex as a single entity. In this work, we suggest a data-driven approach that relies on microstructure measurements for separating SLF-III from the rest of the SLF. We apply the SLF-III separation procedure in three independent datasets using parameters of diffusion MRI (fractional anisotropy), as well as relaxometry-based parameters (T1, T2, T2* and T2-weighted/T1-weighted). We show that the proposed procedure is reproducible across datasets and tractography algorithms. Finally, we suggest that differential crossing with different white-matter tracts is the source of the distinct MRI signatures of SLF-II and SLF-III.
ISSN:1095-9572