Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean <i>p</i>CO<sub>2</sub> Mapping intercomparison (SOCOM)
Using measurements of the surface-ocean CO<sub>2</sub> partial pressure (<i>p</i>CO<sub>2</sub>) and 14 different <i>p</i>CO<sub>2</sub> mapping methods recently collated by the Surface Ocean <i>p</i>CO<sub>2</sub> M...
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2015-12-01
|
Series: | Biogeosciences |
Online Access: | http://www.biogeosciences.net/12/7251/2015/bg-12-7251-2015.pdf |
_version_ | 1818235475779911680 |
---|---|
author | C. Rödenbeck D. C. E. Bakker N. Gruber Y. Iida A. R. Jacobson S. Jones P. Landschützer N. Metzl S. Nakaoka A. Olsen G.-H. Park P. Peylin K. B. Rodgers T. P. Sasse U. Schuster J. D. Shutler V. Valsala R. Wanninkhof J. Zeng |
author_facet | C. Rödenbeck D. C. E. Bakker N. Gruber Y. Iida A. R. Jacobson S. Jones P. Landschützer N. Metzl S. Nakaoka A. Olsen G.-H. Park P. Peylin K. B. Rodgers T. P. Sasse U. Schuster J. D. Shutler V. Valsala R. Wanninkhof J. Zeng |
author_sort | C. Rödenbeck |
collection | DOAJ |
description | Using measurements of the surface-ocean CO<sub>2</sub> partial pressure
(<i>p</i>CO<sub>2</sub>) and 14 different <i>p</i>CO<sub>2</sub> mapping methods recently collated by
the Surface Ocean <i>p</i>CO<sub>2</sub> Mapping intercomparison (SOCOM) initiative,
variations in regional and global sea–air CO<sub>2</sub> fluxes are investigated.
Though the available mapping methods use widely different approaches, we find
relatively consistent estimates of regional <i>p</i>CO<sub>2</sub> seasonality, in line
with previous estimates. In terms of interannual variability (IAV), all
mapping methods estimate the largest variations to occur in the eastern
equatorial Pacific. Despite considerable spread in the detailed variations,
mapping methods that fit the data more closely also tend to agree more
closely with each other in regional averages. Encouragingly, this includes
mapping methods belonging to complementary types – taking variability either
directly from the <i>p</i>CO<sub>2</sub> data or indirectly from driver data via
regression. From a weighted ensemble average, we find an IAV amplitude of the
global sea–air CO<sub>2</sub> flux of 0.31 PgC yr<sup>−1</sup> (standard deviation
over 1992–2009), which is larger than simulated by biogeochemical process
models. From a decadal perspective, the global ocean CO<sub>2</sub> uptake is
estimated to have gradually increased since about 2000, with little decadal
change prior to that. The weighted mean net global ocean CO<sub>2</sub> sink
estimated by the SOCOM ensemble is −1.75 PgC yr<sup>−1</sup> (1992–2009),
consistent within uncertainties with estimates from ocean-interior carbon
data or atmospheric oxygen trends. |
first_indexed | 2024-12-12T11:54:34Z |
format | Article |
id | doaj.art-7e0c435be5214d5a9b07a2a071beb434 |
institution | Directory Open Access Journal |
issn | 1726-4170 1726-4189 |
language | English |
last_indexed | 2024-12-12T11:54:34Z |
publishDate | 2015-12-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Biogeosciences |
spelling | doaj.art-7e0c435be5214d5a9b07a2a071beb4342022-12-22T00:25:13ZengCopernicus PublicationsBiogeosciences1726-41701726-41892015-12-0112237251727810.5194/bg-12-7251-2015Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean <i>p</i>CO<sub>2</sub> Mapping intercomparison (SOCOM)C. Rödenbeck0D. C. E. Bakker1N. Gruber2Y. Iida3A. R. Jacobson4S. Jones5P. Landschützer6N. Metzl7S. Nakaoka8A. Olsen9G.-H. Park10P. Peylin11K. B. Rodgers12T. P. Sasse13U. Schuster14J. D. Shutler15V. Valsala16R. Wanninkhof17J. Zeng18Max Planck Institute for Biogeochemistry, Jena, GermanyCentre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UKInstitute for Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, SwitzerlandGlobal Environment and Marine Department, Japan Meteorological Agency, Tokyo, JapanUniversity of Colorado and NOAA Earth System Research Laboratory, Boulder, CO, USACollege of Life and Environmental Sciences, University of Exeter, UKInstitute for Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, SwitzerlandSorbonne Universités (UPMC, Univ Paris 06)-CNRS-IRD-MNHN, LOCEAN/IPSL Laboratory, Paris, FranceNational Institute for Environmental Studies, Tsukuba, JapanGeophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, NorwayEast Sea Research Institute, Korea Institute of Ocean Science and Technology, Uljin, Republic of KoreaLaboratoire des Sciences du Climat et de l'Environnement (LSCE), Gif sur Yvette, FranceAtmospheric and Oceanic Sciences Program, Princeton University, NJ, USAClimate Change Research Centre, University of New South Wales, Sydney, AustraliaCollege of Life and Environmental Sciences, University of Exeter, UKCollege of Life and Environmental Sciences, University of Exeter, UKIndian Institute of Tropical Meteorology, Pune, IndiaNOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, USANational Institute for Environmental Studies, Tsukuba, JapanUsing measurements of the surface-ocean CO<sub>2</sub> partial pressure (<i>p</i>CO<sub>2</sub>) and 14 different <i>p</i>CO<sub>2</sub> mapping methods recently collated by the Surface Ocean <i>p</i>CO<sub>2</sub> Mapping intercomparison (SOCOM) initiative, variations in regional and global sea–air CO<sub>2</sub> fluxes are investigated. Though the available mapping methods use widely different approaches, we find relatively consistent estimates of regional <i>p</i>CO<sub>2</sub> seasonality, in line with previous estimates. In terms of interannual variability (IAV), all mapping methods estimate the largest variations to occur in the eastern equatorial Pacific. Despite considerable spread in the detailed variations, mapping methods that fit the data more closely also tend to agree more closely with each other in regional averages. Encouragingly, this includes mapping methods belonging to complementary types – taking variability either directly from the <i>p</i>CO<sub>2</sub> data or indirectly from driver data via regression. From a weighted ensemble average, we find an IAV amplitude of the global sea–air CO<sub>2</sub> flux of 0.31 PgC yr<sup>−1</sup> (standard deviation over 1992–2009), which is larger than simulated by biogeochemical process models. From a decadal perspective, the global ocean CO<sub>2</sub> uptake is estimated to have gradually increased since about 2000, with little decadal change prior to that. The weighted mean net global ocean CO<sub>2</sub> sink estimated by the SOCOM ensemble is −1.75 PgC yr<sup>−1</sup> (1992–2009), consistent within uncertainties with estimates from ocean-interior carbon data or atmospheric oxygen trends.http://www.biogeosciences.net/12/7251/2015/bg-12-7251-2015.pdf |
spellingShingle | C. Rödenbeck D. C. E. Bakker N. Gruber Y. Iida A. R. Jacobson S. Jones P. Landschützer N. Metzl S. Nakaoka A. Olsen G.-H. Park P. Peylin K. B. Rodgers T. P. Sasse U. Schuster J. D. Shutler V. Valsala R. Wanninkhof J. Zeng Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean <i>p</i>CO<sub>2</sub> Mapping intercomparison (SOCOM) Biogeosciences |
title | Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean <i>p</i>CO<sub>2</sub> Mapping intercomparison (SOCOM) |
title_full | Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean <i>p</i>CO<sub>2</sub> Mapping intercomparison (SOCOM) |
title_fullStr | Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean <i>p</i>CO<sub>2</sub> Mapping intercomparison (SOCOM) |
title_full_unstemmed | Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean <i>p</i>CO<sub>2</sub> Mapping intercomparison (SOCOM) |
title_short | Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean <i>p</i>CO<sub>2</sub> Mapping intercomparison (SOCOM) |
title_sort | data based estimates of the ocean carbon sink variability first results of the surface ocean i p i co sub 2 sub mapping intercomparison socom |
url | http://www.biogeosciences.net/12/7251/2015/bg-12-7251-2015.pdf |
work_keys_str_mv | AT crodenbeck databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT dcebakker databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT ngruber databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT yiida databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT arjacobson databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT sjones databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT plandschutzer databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT nmetzl databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT snakaoka databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT aolsen databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT ghpark databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT ppeylin databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT kbrodgers databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT tpsasse databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT uschuster databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT jdshutler databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT vvalsala databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT rwanninkhof databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom AT jzeng databasedestimatesoftheoceancarbonsinkvariabilityfirstresultsofthesurfaceoceanipicosub2submappingintercomparisonsocom |