Summary: | Among conducting polymers, polythiophene has gained an important stance due to its remarkable physical features. Graphene is a unique, two-dimensional, nanocarbon nanomaterial. As in other polymers, graphene has been reinforced in polythiophene to form advanced nanocomposites. This comprehensive review covers the design, essential features, and methodological potential of significant polythiophene and graphene-derived nanocomposites. In this context, various facile approaches, such as in situ processing, the solution method, and analogous simplistic means, have been applied. Consequently, polythiophene/graphene nanocomposites have been investigated for their notable electron conductivity, heat conduction, mechanical robustness, morphological profile, and other outstanding properties. Studies have revealed that graphene dispersion and interactions with the polythiophene matrix are responsible for enhancing the overall characteristics of nanocomposites. Fine graphene nanoparticle dispersal and linking with the matrix have led to several indispensable technical applications of these nanocomposites, such as supercapacitors, solar cells, sensors, and related devices. Further research on graphene nanocomposites with polythiophene may lead to remarkable achievements for advanced engineering and device-related materials.
|