A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase

Abstract Artificially Expanded Genetic Information Systems (AEGIS) add independently replicable unnatural nucleotide pairs to the natural G:C and A:T/U pairs found in native DNA, joining the unnatural pairs through alternative modes of hydrogen bonding. Whether and how AEGIS pairs are recognized and...

Full description

Bibliographic Details
Main Authors: Juntaek Oh, Zelin Shan, Shuichi Hoshika, Jun Xu, Jenny Chong, Steven A. Benner, Dmitry Lyumkis, Dong Wang
Format: Article
Language:English
Published: Nature Portfolio 2023-12-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-43735-9
_version_ 1827581503404507136
author Juntaek Oh
Zelin Shan
Shuichi Hoshika
Jun Xu
Jenny Chong
Steven A. Benner
Dmitry Lyumkis
Dong Wang
author_facet Juntaek Oh
Zelin Shan
Shuichi Hoshika
Jun Xu
Jenny Chong
Steven A. Benner
Dmitry Lyumkis
Dong Wang
author_sort Juntaek Oh
collection DOAJ
description Abstract Artificially Expanded Genetic Information Systems (AEGIS) add independently replicable unnatural nucleotide pairs to the natural G:C and A:T/U pairs found in native DNA, joining the unnatural pairs through alternative modes of hydrogen bonding. Whether and how AEGIS pairs are recognized and processed by multi-subunit cellular RNA polymerases (RNAPs) remains unknown. Here, we show that E. coli RNAP selectively recognizes unnatural nucleobases in a six-letter expanded genetic system. High-resolution cryo-EM structures of three RNAP elongation complexes containing template-substrate UBPs reveal the shared principles behind the recognition of AEGIS and natural base pairs. In these structures, RNAPs are captured in an active state, poised to perform the chemistry step. At this point, the unnatural base pair adopts a Watson-Crick geometry, and the trigger loop is folded into an active conformation, indicating that the mechanistic principles underlying recognition and incorporation of natural base pairs also apply to AEGIS unnatural base pairs. These data validate the design philosophy of AEGIS unnatural basepairs. Further, we provide structural evidence supporting a long-standing hypothesis that pair mismatch during transcription occurs via tautomerization. Together, our work highlights the importance of Watson-Crick complementarity underlying the design principles of AEGIS base pair recognition.
first_indexed 2024-03-08T22:37:27Z
format Article
id doaj.art-7e281ad8939f4038ace524d89a2430db
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-03-08T22:37:27Z
publishDate 2023-12-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-7e281ad8939f4038ace524d89a2430db2023-12-17T12:23:10ZengNature PortfolioNature Communications2041-17232023-12-0114111010.1038/s41467-023-43735-9A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymeraseJuntaek Oh0Zelin Shan1Shuichi Hoshika2Jun Xu3Jenny Chong4Steven A. Benner5Dmitry Lyumkis6Dong Wang7Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San DiegoThe Salk Institute for Biological StudiesFoundation for Applied Molecular EvolutionDivision of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San DiegoDivision of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San DiegoFoundation for Applied Molecular EvolutionThe Salk Institute for Biological StudiesDivision of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San DiegoAbstract Artificially Expanded Genetic Information Systems (AEGIS) add independently replicable unnatural nucleotide pairs to the natural G:C and A:T/U pairs found in native DNA, joining the unnatural pairs through alternative modes of hydrogen bonding. Whether and how AEGIS pairs are recognized and processed by multi-subunit cellular RNA polymerases (RNAPs) remains unknown. Here, we show that E. coli RNAP selectively recognizes unnatural nucleobases in a six-letter expanded genetic system. High-resolution cryo-EM structures of three RNAP elongation complexes containing template-substrate UBPs reveal the shared principles behind the recognition of AEGIS and natural base pairs. In these structures, RNAPs are captured in an active state, poised to perform the chemistry step. At this point, the unnatural base pair adopts a Watson-Crick geometry, and the trigger loop is folded into an active conformation, indicating that the mechanistic principles underlying recognition and incorporation of natural base pairs also apply to AEGIS unnatural base pairs. These data validate the design philosophy of AEGIS unnatural basepairs. Further, we provide structural evidence supporting a long-standing hypothesis that pair mismatch during transcription occurs via tautomerization. Together, our work highlights the importance of Watson-Crick complementarity underlying the design principles of AEGIS base pair recognition.https://doi.org/10.1038/s41467-023-43735-9
spellingShingle Juntaek Oh
Zelin Shan
Shuichi Hoshika
Jun Xu
Jenny Chong
Steven A. Benner
Dmitry Lyumkis
Dong Wang
A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase
Nature Communications
title A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase
title_full A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase
title_fullStr A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase
title_full_unstemmed A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase
title_short A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase
title_sort unified watson crick geometry drives transcription of six letter expanded dna alphabets by e coli rna polymerase
url https://doi.org/10.1038/s41467-023-43735-9
work_keys_str_mv AT juntaekoh aunifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase
AT zelinshan aunifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase
AT shuichihoshika aunifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase
AT junxu aunifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase
AT jennychong aunifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase
AT stevenabenner aunifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase
AT dmitrylyumkis aunifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase
AT dongwang aunifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase
AT juntaekoh unifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase
AT zelinshan unifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase
AT shuichihoshika unifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase
AT junxu unifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase
AT jennychong unifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase
AT stevenabenner unifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase
AT dmitrylyumkis unifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase
AT dongwang unifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase