A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase
Abstract Artificially Expanded Genetic Information Systems (AEGIS) add independently replicable unnatural nucleotide pairs to the natural G:C and A:T/U pairs found in native DNA, joining the unnatural pairs through alternative modes of hydrogen bonding. Whether and how AEGIS pairs are recognized and...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2023-12-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-023-43735-9 |
_version_ | 1827581503404507136 |
---|---|
author | Juntaek Oh Zelin Shan Shuichi Hoshika Jun Xu Jenny Chong Steven A. Benner Dmitry Lyumkis Dong Wang |
author_facet | Juntaek Oh Zelin Shan Shuichi Hoshika Jun Xu Jenny Chong Steven A. Benner Dmitry Lyumkis Dong Wang |
author_sort | Juntaek Oh |
collection | DOAJ |
description | Abstract Artificially Expanded Genetic Information Systems (AEGIS) add independently replicable unnatural nucleotide pairs to the natural G:C and A:T/U pairs found in native DNA, joining the unnatural pairs through alternative modes of hydrogen bonding. Whether and how AEGIS pairs are recognized and processed by multi-subunit cellular RNA polymerases (RNAPs) remains unknown. Here, we show that E. coli RNAP selectively recognizes unnatural nucleobases in a six-letter expanded genetic system. High-resolution cryo-EM structures of three RNAP elongation complexes containing template-substrate UBPs reveal the shared principles behind the recognition of AEGIS and natural base pairs. In these structures, RNAPs are captured in an active state, poised to perform the chemistry step. At this point, the unnatural base pair adopts a Watson-Crick geometry, and the trigger loop is folded into an active conformation, indicating that the mechanistic principles underlying recognition and incorporation of natural base pairs also apply to AEGIS unnatural base pairs. These data validate the design philosophy of AEGIS unnatural basepairs. Further, we provide structural evidence supporting a long-standing hypothesis that pair mismatch during transcription occurs via tautomerization. Together, our work highlights the importance of Watson-Crick complementarity underlying the design principles of AEGIS base pair recognition. |
first_indexed | 2024-03-08T22:37:27Z |
format | Article |
id | doaj.art-7e281ad8939f4038ace524d89a2430db |
institution | Directory Open Access Journal |
issn | 2041-1723 |
language | English |
last_indexed | 2024-03-08T22:37:27Z |
publishDate | 2023-12-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Nature Communications |
spelling | doaj.art-7e281ad8939f4038ace524d89a2430db2023-12-17T12:23:10ZengNature PortfolioNature Communications2041-17232023-12-0114111010.1038/s41467-023-43735-9A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymeraseJuntaek Oh0Zelin Shan1Shuichi Hoshika2Jun Xu3Jenny Chong4Steven A. Benner5Dmitry Lyumkis6Dong Wang7Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San DiegoThe Salk Institute for Biological StudiesFoundation for Applied Molecular EvolutionDivision of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San DiegoDivision of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San DiegoFoundation for Applied Molecular EvolutionThe Salk Institute for Biological StudiesDivision of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San DiegoAbstract Artificially Expanded Genetic Information Systems (AEGIS) add independently replicable unnatural nucleotide pairs to the natural G:C and A:T/U pairs found in native DNA, joining the unnatural pairs through alternative modes of hydrogen bonding. Whether and how AEGIS pairs are recognized and processed by multi-subunit cellular RNA polymerases (RNAPs) remains unknown. Here, we show that E. coli RNAP selectively recognizes unnatural nucleobases in a six-letter expanded genetic system. High-resolution cryo-EM structures of three RNAP elongation complexes containing template-substrate UBPs reveal the shared principles behind the recognition of AEGIS and natural base pairs. In these structures, RNAPs are captured in an active state, poised to perform the chemistry step. At this point, the unnatural base pair adopts a Watson-Crick geometry, and the trigger loop is folded into an active conformation, indicating that the mechanistic principles underlying recognition and incorporation of natural base pairs also apply to AEGIS unnatural base pairs. These data validate the design philosophy of AEGIS unnatural basepairs. Further, we provide structural evidence supporting a long-standing hypothesis that pair mismatch during transcription occurs via tautomerization. Together, our work highlights the importance of Watson-Crick complementarity underlying the design principles of AEGIS base pair recognition.https://doi.org/10.1038/s41467-023-43735-9 |
spellingShingle | Juntaek Oh Zelin Shan Shuichi Hoshika Jun Xu Jenny Chong Steven A. Benner Dmitry Lyumkis Dong Wang A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase Nature Communications |
title | A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase |
title_full | A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase |
title_fullStr | A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase |
title_full_unstemmed | A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase |
title_short | A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase |
title_sort | unified watson crick geometry drives transcription of six letter expanded dna alphabets by e coli rna polymerase |
url | https://doi.org/10.1038/s41467-023-43735-9 |
work_keys_str_mv | AT juntaekoh aunifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase AT zelinshan aunifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase AT shuichihoshika aunifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase AT junxu aunifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase AT jennychong aunifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase AT stevenabenner aunifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase AT dmitrylyumkis aunifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase AT dongwang aunifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase AT juntaekoh unifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase AT zelinshan unifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase AT shuichihoshika unifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase AT junxu unifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase AT jennychong unifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase AT stevenabenner unifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase AT dmitrylyumkis unifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase AT dongwang unifiedwatsoncrickgeometrydrivestranscriptionofsixletterexpandeddnaalphabetsbyecolirnapolymerase |