EVATL: A novel framework for emergency vehicle communication with adaptive traffic lights for smart cities

Abstract Fixed cycle traffic lights primarily regulate road traffic, in which traffic light control systems are for specific lanes or crossings in urban areas. Also, not being appropriately installed can prolong the congestion delay and unnecessarily long wait times for crossing intersections, which...

Full description

Bibliographic Details
Main Authors: Ayush Dodia, Sumit Kumar, Ruchi Rani, Sanjeev Kumar Pippal, Pramoda Meduri
Format: Article
Language:English
Published: Wiley 2023-12-01
Series:IET Smart Cities
Subjects:
Online Access:https://doi.org/10.1049/smc2.12068
Description
Summary:Abstract Fixed cycle traffic lights primarily regulate road traffic, in which traffic light control systems are for specific lanes or crossings in urban areas. Also, not being appropriately installed can prolong the congestion delay and unnecessarily long wait times for crossing intersections, which can cause emergency vehicles to become stuck at intersections. Adaptive signal timing management technique that is more computationally viable than current fixed cycle signal control systems and can improve network‐wide traffic operations by reducing traffic delay and energy consumption. Even though specific adaptive control systems exist, there is no mechanism to communicate with emergency vehicles, which is crucial for smart cities. Motivated by this problem, a novel framework, Emergency Vehicle Adaptive Traffic Light (EVATL), is proposed for smart cities where an adaptive mode of operation for traffic lights is employed with emergency vehicle communication, improving their functioning and reducing overall congestion delay. EVATL detects emergency vehicle location using GPS with the Internet of Things(IoT), which integrates with traffic signals and works adaptively according to vehicle density at the traffic signal using YOLOv8. So, the primary goal of the proposed EVATL is to prioritise an emergency vehicle while simultaneously integrating adaptive traffic signals for smart cities. A GUI is developed for evaluating the proposed model by creating different scenarios for an adaptive traffic light and emergency vehicle communication. While analysing the simulation results of the proposed model EVATL, a clear improvement can be seen in the wait time of vehicles at a traffic light with the timely detection of an emergency vehicle at a set distance.
ISSN:2631-7680