Cabaret finite‐difference schemes for the one‐dimensional Euler equations

In the present paper we consider second order compact upwind schemes with a space split time derivative (CABARET) applied to one‐dimensional compressible gas flows. As opposed to the conventional approach associated with incorporating adjacent space cells we use information from adjacent time layer...

Full description

Bibliographic Details
Main Authors: V. M. Goloviznin, T. P. Hynes, S. A. Karabasov
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2001-12-01
Series:Mathematical Modelling and Analysis
Subjects:
-
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/9900
_version_ 1819227817121939456
author V. M. Goloviznin
T. P. Hynes
S. A. Karabasov
author_facet V. M. Goloviznin
T. P. Hynes
S. A. Karabasov
author_sort V. M. Goloviznin
collection DOAJ
description In the present paper we consider second order compact upwind schemes with a space split time derivative (CABARET) applied to one‐dimensional compressible gas flows. As opposed to the conventional approach associated with incorporating adjacent space cells we use information from adjacent time layer to improve the solution accuracy. Taking the first order Roe scheme as the basis we develop a few higher (i.e. second within regions of smooth solutions) order accurate difference schemes. One of them (CABARET3) is formulated in a two‐time‐layer form, which makes it most simple and robust. Supersonic and subsonic shock‐tube tests are used to compare the new schemes with several well‐known second‐order TVD schemes. In particular, it is shown that CABARET3 is notably more accurate than the standard second‐order Roe scheme with MUSCL flux splitting. Vienmačių Eulerio lygčių sprendimas CABARET3 baigtinių-skirtumų schemomis Santrauka Šiame straipsnyje nagrinejamos kompaktiškos antrosios tikslumu eiles baigtiniu skirtumu schemos, kuriose panaudota speciali išvestiniu aproksimacija. Sprendžiamas vienmatis spūdžiu duju judejimo uždavinys. Darbe pasiūlytas didesnio tikslumo schemu konstravimo metodas, kuriame išnaudojama informacija apie sprendini iš žemesnio laiko sluoksnio. CABARET3 schema yra dvisluoksne, todel jos realizavimo algoritmas yra ekonomiškas. Pateikiami skaičiavimo eksperimento rezultatai, kurie patvirtina, kad CABARET3 schema yra tikslesne už antrosios tikslumo eiles Roe schema, naudojančia MUSCL srauto išskaidyma. First Published Online: 14 Oct 2010
first_indexed 2024-12-23T10:47:24Z
format Article
id doaj.art-7e73f5953228467bad8667c57dbb0525
institution Directory Open Access Journal
issn 1392-6292
1648-3510
language English
last_indexed 2024-12-23T10:47:24Z
publishDate 2001-12-01
publisher Vilnius Gediminas Technical University
record_format Article
series Mathematical Modelling and Analysis
spelling doaj.art-7e73f5953228467bad8667c57dbb05252022-12-21T17:50:00ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102001-12-016210.3846/13926292.2001.9637160Cabaret finite‐difference schemes for the one‐dimensional Euler equationsV. M. Goloviznin0T. P. Hynes1S. A. Karabasov2Moscow Institute of Nuclear Safety , Russian Academy of Sciences , 52 B. Tulskaya Ulitsa, Moscow, 113191, RussiaWhittle Laboratory , Cambridge University, Engineering Department , Madingley Rd, Cambridge, CB3 ODY, UKWhittle Laboratory , Cambridge University, Engineering Department , Madingley Rd, Cambridge, CB3 ODY, UK E-mail: sak36@eng.cam.ac.uk ; Moscow Institute of Nuclear Safety , Russian Academy of Sciences , 52 B. Tulskaya Ulitsa, Moscow, 113191, RussiaIn the present paper we consider second order compact upwind schemes with a space split time derivative (CABARET) applied to one‐dimensional compressible gas flows. As opposed to the conventional approach associated with incorporating adjacent space cells we use information from adjacent time layer to improve the solution accuracy. Taking the first order Roe scheme as the basis we develop a few higher (i.e. second within regions of smooth solutions) order accurate difference schemes. One of them (CABARET3) is formulated in a two‐time‐layer form, which makes it most simple and robust. Supersonic and subsonic shock‐tube tests are used to compare the new schemes with several well‐known second‐order TVD schemes. In particular, it is shown that CABARET3 is notably more accurate than the standard second‐order Roe scheme with MUSCL flux splitting. Vienmačių Eulerio lygčių sprendimas CABARET3 baigtinių-skirtumų schemomis Santrauka Šiame straipsnyje nagrinejamos kompaktiškos antrosios tikslumu eiles baigtiniu skirtumu schemos, kuriose panaudota speciali išvestiniu aproksimacija. Sprendžiamas vienmatis spūdžiu duju judejimo uždavinys. Darbe pasiūlytas didesnio tikslumo schemu konstravimo metodas, kuriame išnaudojama informacija apie sprendini iš žemesnio laiko sluoksnio. CABARET3 schema yra dvisluoksne, todel jos realizavimo algoritmas yra ekonomiškas. Pateikiami skaičiavimo eksperimento rezultatai, kurie patvirtina, kad CABARET3 schema yra tikslesne už antrosios tikslumo eiles Roe schema, naudojančia MUSCL srauto išskaidyma. First Published Online: 14 Oct 2010https://journals.vgtu.lt/index.php/MMA/article/view/9900-
spellingShingle V. M. Goloviznin
T. P. Hynes
S. A. Karabasov
Cabaret finite‐difference schemes for the one‐dimensional Euler equations
Mathematical Modelling and Analysis
-
title Cabaret finite‐difference schemes for the one‐dimensional Euler equations
title_full Cabaret finite‐difference schemes for the one‐dimensional Euler equations
title_fullStr Cabaret finite‐difference schemes for the one‐dimensional Euler equations
title_full_unstemmed Cabaret finite‐difference schemes for the one‐dimensional Euler equations
title_short Cabaret finite‐difference schemes for the one‐dimensional Euler equations
title_sort cabaret finite difference schemes for the one dimensional euler equations
topic -
url https://journals.vgtu.lt/index.php/MMA/article/view/9900
work_keys_str_mv AT vmgoloviznin cabaretfinitedifferenceschemesfortheonedimensionaleulerequations
AT tphynes cabaretfinitedifferenceschemesfortheonedimensionaleulerequations
AT sakarabasov cabaretfinitedifferenceschemesfortheonedimensionaleulerequations