Single-Atom Co-Catalysts Employed in Titanium Dioxide Photocatalysis

With a distinct electronic structure and unsaturated coordination centers, supported single-atoms (SAs) have shown great potential in heterogeneous catalysis due to their superior activity, stability, and selectivity. Over the last few years, the fascination of SA-use spread also over photocatalysis...

Full description

Bibliographic Details
Main Authors: Ujjaval Kerketta, Alexander B. Tesler, Patrik Schmuki
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/12/10/1223
Description
Summary:With a distinct electronic structure and unsaturated coordination centers, supported single-atoms (SAs) have shown great potential in heterogeneous catalysis due to their superior activity, stability, and selectivity. Over the last few years, the fascination of SA-use spread also over photocatalysis, i.e., a particular case of heterogeneous catalysis in which chemical reactions are activated by charge transfer from an illuminated semiconductor. Titanium dioxide (TiO<sub>2</sub>) is one of the most studied photocatalytic materials. It is widely used as a light absorbing semiconductor decorated with metallic (nanoparticles and single-atom) co-catalysts. In the current review, we emphasize the role of SAs as a co-catalyst in photocatalysis, and clearly set it apart from the use of single atoms in classic heterogeneous catalysis. The review first briefly describes the principal features of SAs, and gives an overview of most important examples of single-atom co-catalysts. Then, we discuss photocatalysis and key examples of single-atom co-catalysts used on TiO<sub>2</sub> photocatalysts and their applications. At last, we provide an outlook for further exploring TiO<sub>2</sub>-based single-atom photocatalytic systems.
ISSN:2073-4344