CPK12 and Ca2+-mediated hypoxia signaling

Hypoxia triggers reactive oxygen species (ROS)-induced elevation in cytoplasmic calcium (Ca2+) in the plant cells. Calcium-dependent protein kinase 12 (CPK12) acts as a sensor to recognize the Ca2+ signature and is activated by autophosphorylation. Then, the CPK12 moves into the nucleus with the hel...

Full description

Bibliographic Details
Main Author: Santosh Kumar Upadhyay
Format: Article
Language:English
Published: Taylor & Francis Group 2023-12-01
Series:Plant Signaling & Behavior
Subjects:
Online Access:http://dx.doi.org/10.1080/15592324.2023.2273593
Description
Summary:Hypoxia triggers reactive oxygen species (ROS)-induced elevation in cytoplasmic calcium (Ca2+) in the plant cells. Calcium-dependent protein kinase 12 (CPK12) acts as a sensor to recognize the Ca2+ signature and is activated by autophosphorylation. Then, the CPK12 moves into the nucleus with the help of phosphatidic acid (PA) and phosphorylates ERF-VII family proteins that activate hypoxia signaling and response. The study provides a novel mechanism of hypoxia signaling in plants. Moreover, the mechanism of hypoxia-specific Ca2+ signature generation remains elusive.
ISSN:1559-2316
1559-2324