Contact line length dominance in evaporation of confined nonspherical droplets
Free droplets are spherical within capillary lengths and become nonspherical when trapped in a confined space. Confined nonspherical droplets are as common as spherical droplets. Yet, their evaporation dynamics are not fully understood because of their geometrical complexity. We use monochromatic sy...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2024-02-01
|
Series: | Physical Review Research |
Online Access: | http://doi.org/10.1103/PhysRevResearch.6.L012026 |