Experimental Study of the Injectability of Infiltration Grouting in Surface Moraine of Pulang Copper Mine

In order to effectively reduce the risk of underground debris flow, surface moraine is solidified and modified by using grouting technology to realize the change in fine-grained moraine from “powder” to “block” to change the source conditions of underground debris flow and to reduce the risk of mora...

Full description

Bibliographic Details
Main Authors: Zeng Liu, Wei Sun, Xinglong Feng, Shaoyong Wang, Chong Chen, Hao Song, Minggui Jiang, Kai Fan
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/16/5/728
Description
Summary:In order to effectively reduce the risk of underground debris flow, surface moraine is solidified and modified by using grouting technology to realize the change in fine-grained moraine from “powder” to “block” to change the source conditions of underground debris flow and to reduce the risk of moraine from the root. In this paper, the effects of grouting pressure, porosity, and pore diameter on the spillability of moraine are investigated experimentally. The results show that the grouting depth increases linearly with increasing sample porosity. For the same sample density, the grouting pressure is proportional to the grouting depth. As the pore diameter of the sample increases, the longitudinal grouting depth of the sample increases, but the transverse diffusion distance decreases. The chemical grout in the moraine is mainly split-infiltration grouting mode. The present research results can provide effective support for the prevention and control of underground debris flow in Pulang Copper Mine.
ISSN:2073-4441