Large-scale snow data assimilation using a spatialized particle filter: recovering the spatial structure of the particles
<p>Data assimilation is an essential component of any hydrological forecasting system. Its purpose is to incorporate some observations from the field when they become available in order to correct the state variables of the model prior to the forecasting phase. The goal is to ensure that the f...
Hlavní autoři: | J. Odry, M.-A. Boucher, S. Lachance-Cloutier, R. Turcotte, P.-Y. St-Louis |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Copernicus Publications
2022-09-01
|
Edice: | The Cryosphere |
On-line přístup: | https://tc.copernicus.org/articles/16/3489/2022/tc-16-3489-2022.pdf |
Podobné jednotky
-
A genetic particle filter scheme for univariate snow cover assimilation into Noah-MP model across snow climates
Autor: Y. You, a další
Vydáno: (2023-08-01) -
Particle network EnKF for large-scale data assimilation
Autor: Xinjia Li, a další
Vydáno: (2022-09-01) -
Assimilation of the Rain Gauge Measurements Using Particle Filter
Autor: Prashant Kumar
Vydáno: (2020-10-01) -
ParticleDA.jl v.1.0: a distributed particle-filtering data assimilation package
Autor: D. Giles, a další
Vydáno: (2024-03-01) -
A particle filter scheme for multivariate data assimilation into a point-scale snowpack model in an Alpine environment
Autor: G. Piazzi, a další
Vydáno: (2018-07-01)