Preclinical Evaluation of a Novel Lentiviral Vector Driving Lineage-Specific BCL11A Knockdown for Sickle Cell Gene Therapy

In this work we provide preclinical data to support initiation of a first-in-human trial for sickle cell disease (SCD) using an approach that relies on reversal of the developmental fetal-to-adult hemoglobin switch. Erythroid-specific knockdown of BCL11A via a lentiviral-encoded microRNA-adapted sho...

Full description

Bibliographic Details
Main Authors: Christian Brendel, Olivier Negre, Michael Rothe, Swaroopa Guda, Geoff Parsons, Chad Harris, Meaghan McGuinness, Daniela Abriss, Alla Tsytsykova, Denise Klatt, Martin Bentler, Danilo Pellin, Lauryn Christiansen, Axel Schambach, John Manis, Helene Trebeden-Negre, Melissa Bonner, Erica Esrick, Gabor Veres, Myriam Armant, David A. Williams
Format: Article
Language:English
Published: Elsevier 2020-06-01
Series:Molecular Therapy: Methods & Clinical Development
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2329050120300450
_version_ 1819076811632410624
author Christian Brendel
Olivier Negre
Michael Rothe
Swaroopa Guda
Geoff Parsons
Chad Harris
Meaghan McGuinness
Daniela Abriss
Alla Tsytsykova
Denise Klatt
Martin Bentler
Danilo Pellin
Lauryn Christiansen
Axel Schambach
John Manis
Helene Trebeden-Negre
Melissa Bonner
Erica Esrick
Gabor Veres
Myriam Armant
David A. Williams
author_facet Christian Brendel
Olivier Negre
Michael Rothe
Swaroopa Guda
Geoff Parsons
Chad Harris
Meaghan McGuinness
Daniela Abriss
Alla Tsytsykova
Denise Klatt
Martin Bentler
Danilo Pellin
Lauryn Christiansen
Axel Schambach
John Manis
Helene Trebeden-Negre
Melissa Bonner
Erica Esrick
Gabor Veres
Myriam Armant
David A. Williams
author_sort Christian Brendel
collection DOAJ
description In this work we provide preclinical data to support initiation of a first-in-human trial for sickle cell disease (SCD) using an approach that relies on reversal of the developmental fetal-to-adult hemoglobin switch. Erythroid-specific knockdown of BCL11A via a lentiviral-encoded microRNA-adapted short hairpin RNA (shRNAmiR) leads to reactivation of the gamma-globin gene while simultaneously reducing expression of the pathogenic adult sickle β-globin. We generated a refined lentiviral vector (LVV) BCH-BB694 that was developed to overcome poor vector titers observed in the manufacturing scale-up of the original research-grade LVV. Healthy or sickle cell donor CD34+ cells transduced with Good Manufacturing Practices (GMP)-grade BCH-BB694 LVV achieved high vector copy numbers (VCNs) >5 and gene marking of >80%, resulting in a 3- to 5-fold induction of fetal hemoglobin (HbF) compared with mock-transduced cells without affecting growth, differentiation, and engraftment of gene-modified cells in vitro or in vivo. In vitro immortalization assays, which are designed to measure vector-mediated genotoxicity, showed no increased immortalization compared with mock-transduced cells. Together these data demonstrate that BCH-BB694 LVV is non-toxic and efficacious in preclinical studies, and can be generated at a clinically relevant scale in a GMP setting at high titer to support clinical testing for the treatment of SCD.
first_indexed 2024-12-21T18:47:14Z
format Article
id doaj.art-7ebf28bc3d664f328d3cea76508fe211
institution Directory Open Access Journal
issn 2329-0501
language English
last_indexed 2024-12-21T18:47:14Z
publishDate 2020-06-01
publisher Elsevier
record_format Article
series Molecular Therapy: Methods & Clinical Development
spelling doaj.art-7ebf28bc3d664f328d3cea76508fe2112022-12-21T18:53:51ZengElsevierMolecular Therapy: Methods & Clinical Development2329-05012020-06-0117589600Preclinical Evaluation of a Novel Lentiviral Vector Driving Lineage-Specific BCL11A Knockdown for Sickle Cell Gene TherapyChristian Brendel0Olivier Negre1Michael Rothe2Swaroopa Guda3Geoff Parsons4Chad Harris5Meaghan McGuinness6Daniela Abriss7Alla Tsytsykova8Denise Klatt9Martin Bentler10Danilo Pellin11Lauryn Christiansen12Axel Schambach13John Manis14Helene Trebeden-Negre15Melissa Bonner16Erica Esrick17Gabor Veres18Myriam Armant19David A. Williams20Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USAbluebird bio, Inc., Cambridge, MA, USAInstitute of Experimental Hematology, Hannover Medical School, Hannover, GermanyDivision of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USAbluebird bio, Inc., Cambridge, MA, USADivision of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USADivision of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USADivision of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USADivision of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USADivision of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA; Institute of Experimental Hematology, Hannover Medical School, Hannover, GermanyDivision of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA; Institute of Experimental Hematology, Hannover Medical School, Hannover, GermanyDivision of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USAbluebird bio, Inc., Cambridge, MA, USAInstitute of Experimental Hematology, Hannover Medical School, Hannover, GermanyDepartment of Laboratory Medicine, Boston Children’s Hospital, Boston, MA, USAConnell & O’Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, MA, USAbluebird bio, Inc., Cambridge, MA, USADivision of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USAbluebird bio, Inc., Cambridge, MA, USADivision of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USADivision of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Corresponding author: David A. Williams, Boston Children’s Hospital, 300 Longwood Avenue, Karp 08125.3, Boston, MA 02115, USA.In this work we provide preclinical data to support initiation of a first-in-human trial for sickle cell disease (SCD) using an approach that relies on reversal of the developmental fetal-to-adult hemoglobin switch. Erythroid-specific knockdown of BCL11A via a lentiviral-encoded microRNA-adapted short hairpin RNA (shRNAmiR) leads to reactivation of the gamma-globin gene while simultaneously reducing expression of the pathogenic adult sickle β-globin. We generated a refined lentiviral vector (LVV) BCH-BB694 that was developed to overcome poor vector titers observed in the manufacturing scale-up of the original research-grade LVV. Healthy or sickle cell donor CD34+ cells transduced with Good Manufacturing Practices (GMP)-grade BCH-BB694 LVV achieved high vector copy numbers (VCNs) >5 and gene marking of >80%, resulting in a 3- to 5-fold induction of fetal hemoglobin (HbF) compared with mock-transduced cells without affecting growth, differentiation, and engraftment of gene-modified cells in vitro or in vivo. In vitro immortalization assays, which are designed to measure vector-mediated genotoxicity, showed no increased immortalization compared with mock-transduced cells. Together these data demonstrate that BCH-BB694 LVV is non-toxic and efficacious in preclinical studies, and can be generated at a clinically relevant scale in a GMP setting at high titer to support clinical testing for the treatment of SCD.http://www.sciencedirect.com/science/article/pii/S2329050120300450Sickle cell diseaseHbShemoglobinopathiesgene therapylentiviral vectorBCL11A
spellingShingle Christian Brendel
Olivier Negre
Michael Rothe
Swaroopa Guda
Geoff Parsons
Chad Harris
Meaghan McGuinness
Daniela Abriss
Alla Tsytsykova
Denise Klatt
Martin Bentler
Danilo Pellin
Lauryn Christiansen
Axel Schambach
John Manis
Helene Trebeden-Negre
Melissa Bonner
Erica Esrick
Gabor Veres
Myriam Armant
David A. Williams
Preclinical Evaluation of a Novel Lentiviral Vector Driving Lineage-Specific BCL11A Knockdown for Sickle Cell Gene Therapy
Molecular Therapy: Methods & Clinical Development
Sickle cell disease
HbS
hemoglobinopathies
gene therapy
lentiviral vector
BCL11A
title Preclinical Evaluation of a Novel Lentiviral Vector Driving Lineage-Specific BCL11A Knockdown for Sickle Cell Gene Therapy
title_full Preclinical Evaluation of a Novel Lentiviral Vector Driving Lineage-Specific BCL11A Knockdown for Sickle Cell Gene Therapy
title_fullStr Preclinical Evaluation of a Novel Lentiviral Vector Driving Lineage-Specific BCL11A Knockdown for Sickle Cell Gene Therapy
title_full_unstemmed Preclinical Evaluation of a Novel Lentiviral Vector Driving Lineage-Specific BCL11A Knockdown for Sickle Cell Gene Therapy
title_short Preclinical Evaluation of a Novel Lentiviral Vector Driving Lineage-Specific BCL11A Knockdown for Sickle Cell Gene Therapy
title_sort preclinical evaluation of a novel lentiviral vector driving lineage specific bcl11a knockdown for sickle cell gene therapy
topic Sickle cell disease
HbS
hemoglobinopathies
gene therapy
lentiviral vector
BCL11A
url http://www.sciencedirect.com/science/article/pii/S2329050120300450
work_keys_str_mv AT christianbrendel preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT oliviernegre preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT michaelrothe preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT swaroopaguda preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT geoffparsons preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT chadharris preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT meaghanmcguinness preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT danielaabriss preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT allatsytsykova preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT deniseklatt preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT martinbentler preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT danilopellin preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT laurynchristiansen preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT axelschambach preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT johnmanis preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT helenetrebedennegre preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT melissabonner preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT ericaesrick preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT gaborveres preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT myriamarmant preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy
AT davidawilliams preclinicalevaluationofanovellentiviralvectordrivinglineagespecificbcl11aknockdownforsicklecellgenetherapy