Ailanthus altissima leaf extract mediated green production of zinc oxide (ZnO) nanoparticles for antibacterial and antioxidant activity

Background: Fabricating zinc oxide nanoparticles (ZnO-NPs) from plant extracts is a cost-effective, safe, and environmentally friendly alternative to established chemical procedures. This study was aimed at the environmentally friendly fabrication of ZnO-NPs from plant extract. An additional objecti...

Full description

Bibliographic Details
Main Authors: Shahid Shabbir Awan, Rizwan Taj Khan, Ansar Mehmood, Muhammad Hafeez, Syed Rizwan Abass, Munazza Nazir, Muhammad Raffi
Format: Article
Language:English
Published: Elsevier 2023-01-01
Series:Saudi Journal of Biological Sciences
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1319562X2200403X
Description
Summary:Background: Fabricating zinc oxide nanoparticles (ZnO-NPs) from plant extracts is a cost-effective, safe, and environmentally friendly alternative to established chemical procedures. This study was aimed at the environmentally friendly fabrication of ZnO-NPs from plant extract. An additional objective was to investigate the antibacterial and antioxidant activity of these biosynthesized ZnO-NPs. Methods: ZnO-NPs were fabricated using the leaf extract of Ailanthus altissima, as an eco-friendly approach. The physicochemical properties of ZnO-NPs were explored using UV–visible spectroscopy, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectrometry. The bio-fabricated ZnO-NPs were examined for bactericidal activity against pathogenic bacteria (gram-negative and gram-positive) using the agar well diffusion technique. The antioxidant efficiency of ZnO-NPs was assessed using a DPPH assay. Results: A surface Plasmon peak was recorded at 327 nm, showing the existence of ZnO-NPs in the reaction solution of plant extract and zinc sulfate hexahydrate salt. These nanoparticles were predominantly spherical and capped by different functional groups of biomolecules. Furthermore, ZnO-NPs showed a dose-dependent antibacterial and antioxidant activity. At 20 mg/mL ZnO-NPs, the maximum bactericidal potential of ZnO-NPs was reported against Staphylococcus aureus (201.2 mm). ZnO-NPs have an IC50 value of 78.23 µg/mL, indicating that they are an effective antioxidant. Conclusion: This research presents an environmentally acceptable method for producing spherical ZnO-NPs with high antibacterial and antioxidant activities. These bio-fabricated ZnO-NPs could be a good option for applications in medicine and the healthcare industry.
ISSN:1319-562X