Selecting a Proper Microsphere to Combine Optical Trapping with Microsphere-Assisted Microscopy

Microsphere-assisted microscopy serves as an effective super-resolution technique in biological observations and nanostructure detections, and optical trapping is widely used for the manipulation of small particles like microspheres. In this study, we focus on the selection of microsphere types for...

Full description

Bibliographic Details
Main Authors: Xi Liu, Song Hu, Yan Tang, Zhongye Xie, Junbo Liu, Yu He
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/9/3127
Description
Summary:Microsphere-assisted microscopy serves as an effective super-resolution technique in biological observations and nanostructure detections, and optical trapping is widely used for the manipulation of small particles like microspheres. In this study, we focus on the selection of microsphere types for the combination of the optical trapping and the super-resolution microsphere-assisted microscopy, by considering the optical trapping performances and the super-resolution imaging ability of index-different microspheres in water simultaneously. Finally, the polystyrene (PS) sphere and the melamine formaldehyde (MF) sphere have been selected from four typical index-different microspheres normally used in microsphere-assisted microscopy. In experiments, the optically trapped PS/MF microsphere in water has been used to achieve super-resolution imaging of a 139 nm line-width silicon nanostructure grating under white light illumination. The image quality and the magnification factor are affected by the refractive index contrast between the microspheres and the immersion medium, and the difference of image quality is partly explained by the photonic nanojet. This work guides us in selecting proper microspheres, and also provides a label-free super-resolution imaging technique in many research fields.
ISSN:2076-3417