Micafungin induced apoptosis in Candida parapsilosis independent of its susceptibility to micafungin

We hypothesized that the cell wall inhibitor micafungin (MICA) induces apoptosis in both MICA-susceptible (MICA-S) and MICA–non-susceptible (MICA-NS) Candida parapsilosis. Antifungal activity and apoptosis were analyzed in MICA-S and MICA-NS C. parapsilosis strains following expo...

Full description

Bibliographic Details
Main Authors: Fazal Shirazi, Russel E. Lewis, Dimitrios P. Kontoyiannis
Format: Article
Language:English
Published: Shared Science Publishers OG 2015-10-01
Series:Microbial Cell
Subjects:
Online Access:http://microbialcell.com/researcharticles/micafungin-induced-apoptosis-in-candida-parapsilosis-independent-of-its-susceptibility-to-micafungin/
Description
Summary:We hypothesized that the cell wall inhibitor micafungin (MICA) induces apoptosis in both MICA-susceptible (MICA-S) and MICA–non-susceptible (MICA-NS) Candida parapsilosis. Antifungal activity and apoptosis were analyzed in MICA-S and MICA-NS C. parapsilosis strains following exposure to micafungin for 3 h at 37°C in RPMI 1640 medium. Apoptosis was characterized by detecting phosphatidylserine externalization (PS), plasma membrane integrity, reactive oxygen species (ROS) generation, mitochondrial membrane potential changes, adenosine triphosphate (ATP) release, and caspase-like activity. Apoptosis was detected in MICA exposed (0.25 to 1 mg/L) susceptible C. parapsilosis strains and was associated with apoptosis of 20-52% of analyzed cells versus only 5-30% of apoptosis in MICA-NS cells exposed to micafungin (0.5 to 2 mg/L; P = 0.001). The MICA antifungal activity was correlated with apoptotic cells showing increased dihydrorhodamine-123 staining (indicating ROS production), Rh-123 staining (decreased mitochondrial membrane potential), elevated ATP, and increased metacaspase activity. In conclusion, MICA is pro-apoptotic in MICA-S cells, but still exerts apoptotic effects in MICA –NS C. parapsilosis.
ISSN:2311-2638