Sizing of prosumer hybrid renewable energy systems in Poland

Nowadays the demand for renewable energy sources is constantly growing. There are several reasons of such state, including requirements for energy-efficient new buildings and reduction of greenhouse gas emissions. An exemplary solution that may help to reduce “traditional” primary energy consumption...

Full description

Bibliographic Details
Main Authors: M. Bartecka, P. Terlikowski, M. Kłos, Ł. Michalski
Format: Article
Language:English
Published: Polish Academy of Sciences 2020-06-01
Series:Bulletin of the Polish Academy of Sciences: Technical Sciences
Subjects:
Online Access:https://journals.pan.pl/Content/116303/PDF/08_721-731_01496_Bpast.No.68-4_27.08.20.pdf
Description
Summary:Nowadays the demand for renewable energy sources is constantly growing. There are several reasons of such state, including requirements for energy-efficient new buildings and reduction of greenhouse gas emissions. An exemplary solution that may help to reduce “traditional” primary energy consumption is local energy source utilization. The article presents a simplified feasibility study of hybrid energy system under Polish law and economic conditions for a self-government unit, that is legally obliged to apply means of energy efficiency improvement. The aim of this paper is to provide a simple algorithm to find optimal hybrid PV and wind power source sizing for a prosumer. Resource data used in analyses are imported from Photovoltaic Geographical Information System and cover a period of one year. The paper includes two different methodologies applied to solve the problem of optimal hybrid energy system sizing. The first approach is heuristic and based on monthly energy balancing while the second is iterative and takes into account hourly energy balance. The results from both methods are compared and verified by HomerPro software, that shows significant differences between two algorithms. At the end economic assessment based on Net Present Value method is performed.
ISSN:2300-1917