A global 5 km monthly potential evapotranspiration dataset (1982–2015) estimated by the Shuttleworth–Wallace model

<p>As the theoretical upper bound of evapotranspiration (ET) or water use by ecosystems, potential ET (PET) has always been widely used as a variable linking a variety of disciplines, such as climatology, ecology, hydrology, and agronomy. However, substantial uncertainties exist in the current...

Full description

Bibliographic Details
Main Authors: S. Sun, Z. Bi, J. Xiao, Y. Liu, G. Sun, W. Ju, C. Liu, M. Mu, J. Li, Y. Zhou, X. Li, H. Chen
Format: Article
Language:English
Published: Copernicus Publications 2023-10-01
Series:Earth System Science Data
Online Access:https://essd.copernicus.org/articles/15/4849/2023/essd-15-4849-2023.pdf
_version_ 1827778310916014080
author S. Sun
Z. Bi
J. Xiao
Y. Liu
G. Sun
W. Ju
C. Liu
M. Mu
J. Li
Y. Zhou
X. Li
Y. Liu
H. Chen
author_facet S. Sun
Z. Bi
J. Xiao
Y. Liu
G. Sun
W. Ju
C. Liu
M. Mu
J. Li
Y. Zhou
X. Li
Y. Liu
H. Chen
author_sort S. Sun
collection DOAJ
description <p>As the theoretical upper bound of evapotranspiration (ET) or water use by ecosystems, potential ET (PET) has always been widely used as a variable linking a variety of disciplines, such as climatology, ecology, hydrology, and agronomy. However, substantial uncertainties exist in the current PET methods (e.g., empiric models and single-layer models) and datasets because of unrealistic configurations of land surface and unreasonable parameterizations. Therefore, this study comprehensively considered interspecific differences in various vegetation-related parameters (e.g., plant stomatal resistance and CO<span class="inline-formula"><sub>2</sub></span> effects on stomatal resistance) to calibrate and parametrize the Shuttleworth–Wallace (SW) model for forests, shrubland, grassland, and cropland. We derived the parameters using identified daily ET observations with no water stress (i.e., PET) at 96 eddy covariance (EC) sites across the globe. Model validations suggest that the calibrated model could be transferable from known observations to any location. Based on four popular meteorological datasets, relatively realistic canopy height, time-varying land use or land cover, and the leaf area index, we generated a global 5 km ensemble mean monthly PET dataset that includes two components of potential transpiration (PT) and soil evaporation (PE) for the 1982–2015 time period. Using this new dataset, the climatological characteristics of PET partitioning and the spatiotemporal changes in PET, PE, and PT were investigated. The global mean annual PET was 1198.96 mm with <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">PT</mi><mo>/</mo><mi mathvariant="normal">PET</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="43pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="aebd93389aaaf172a0ea20261d9aa2b5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-15-4849-2023-ie00001.svg" width="43pt" height="14pt" src="essd-15-4849-2023-ie00001.png"/></svg:svg></span></span> of 41 % and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">PE</mi><mo>/</mo><mi mathvariant="normal">PET</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="44pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="48cf54129caa3e459d789355aed0fbd9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-15-4849-2023-ie00002.svg" width="44pt" height="14pt" src="essd-15-4849-2023-ie00002.png"/></svg:svg></span></span> of 59 %, controlled moreover by PT and PE of over 41 % and 59 % of the globe, respectively. Globally, the annual PET and PT significantly (<span class="inline-formula"><i>p</i><i>&lt;</i>0.05</span>) increase by 1.26 and 1.27 mm yr<span class="inline-formula"><sup>−1</sup></span> over the last 34 years, followed by a slight decrease in the annual PE. Overall, the annual PET changes over 53 % of the globe could be attributed to PT, and the rest to PE. The new PET dataset may be<span id="page4850"/> used by academic communities and various agencies to conduct climatological analyses, hydrological modeling, drought studies, agricultural water management, and biodiversity conservation. The dataset is available at <a href="https://doi.org/10.11888/Terre.tpdc.300193">https://doi.org/10.11888/Terre.tpdc.300193</a> (Sun et al., 2023).</p>
first_indexed 2024-03-11T14:31:14Z
format Article
id doaj.art-7ef8637c10cc47a092e5d2d59feef422
institution Directory Open Access Journal
issn 1866-3508
1866-3516
language English
last_indexed 2024-03-11T14:31:14Z
publishDate 2023-10-01
publisher Copernicus Publications
record_format Article
series Earth System Science Data
spelling doaj.art-7ef8637c10cc47a092e5d2d59feef4222023-10-31T08:33:11ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162023-10-01154849487610.5194/essd-15-4849-2023A global 5&thinsp;km monthly potential evapotranspiration dataset (1982–2015) estimated by the Shuttleworth–Wallace modelS. Sun0Z. Bi1J. Xiao2Y. Liu3G. Sun4W. Ju5C. Liu6M. Mu7J. Li8Y. Zhou9X. Li10Y. Liu11H. Chen12Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Research Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, ChinaCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Research Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, ChinaEarth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, USASchool of Civil and Environmental Engineering, University of New South Wales, Sydney, AustraliaEastern Forest Environmental Threat Assessment Center, Southern Research Station, USDA Forest Service, Raleigh, USAInternational Institute for Earth System Science, Nanjing University, Nanjing, ChinaJiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, ChinaARC Centre of Excellence for Climate Extremes and Climate Change Research Centre, University of New South Wales, Sydney, AustraliaSchool of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu University of Information Technology, Chengdu, ChinaCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Research Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, ChinaCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Research Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, ChinaJiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, ChinaCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Research Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, China<p>As the theoretical upper bound of evapotranspiration (ET) or water use by ecosystems, potential ET (PET) has always been widely used as a variable linking a variety of disciplines, such as climatology, ecology, hydrology, and agronomy. However, substantial uncertainties exist in the current PET methods (e.g., empiric models and single-layer models) and datasets because of unrealistic configurations of land surface and unreasonable parameterizations. Therefore, this study comprehensively considered interspecific differences in various vegetation-related parameters (e.g., plant stomatal resistance and CO<span class="inline-formula"><sub>2</sub></span> effects on stomatal resistance) to calibrate and parametrize the Shuttleworth–Wallace (SW) model for forests, shrubland, grassland, and cropland. We derived the parameters using identified daily ET observations with no water stress (i.e., PET) at 96 eddy covariance (EC) sites across the globe. Model validations suggest that the calibrated model could be transferable from known observations to any location. Based on four popular meteorological datasets, relatively realistic canopy height, time-varying land use or land cover, and the leaf area index, we generated a global 5 km ensemble mean monthly PET dataset that includes two components of potential transpiration (PT) and soil evaporation (PE) for the 1982–2015 time period. Using this new dataset, the climatological characteristics of PET partitioning and the spatiotemporal changes in PET, PE, and PT were investigated. The global mean annual PET was 1198.96 mm with <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">PT</mi><mo>/</mo><mi mathvariant="normal">PET</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="43pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="aebd93389aaaf172a0ea20261d9aa2b5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-15-4849-2023-ie00001.svg" width="43pt" height="14pt" src="essd-15-4849-2023-ie00001.png"/></svg:svg></span></span> of 41 % and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">PE</mi><mo>/</mo><mi mathvariant="normal">PET</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="44pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="48cf54129caa3e459d789355aed0fbd9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-15-4849-2023-ie00002.svg" width="44pt" height="14pt" src="essd-15-4849-2023-ie00002.png"/></svg:svg></span></span> of 59 %, controlled moreover by PT and PE of over 41 % and 59 % of the globe, respectively. Globally, the annual PET and PT significantly (<span class="inline-formula"><i>p</i><i>&lt;</i>0.05</span>) increase by 1.26 and 1.27 mm yr<span class="inline-formula"><sup>−1</sup></span> over the last 34 years, followed by a slight decrease in the annual PE. Overall, the annual PET changes over 53 % of the globe could be attributed to PT, and the rest to PE. The new PET dataset may be<span id="page4850"/> used by academic communities and various agencies to conduct climatological analyses, hydrological modeling, drought studies, agricultural water management, and biodiversity conservation. The dataset is available at <a href="https://doi.org/10.11888/Terre.tpdc.300193">https://doi.org/10.11888/Terre.tpdc.300193</a> (Sun et al., 2023).</p>https://essd.copernicus.org/articles/15/4849/2023/essd-15-4849-2023.pdf
spellingShingle S. Sun
Z. Bi
J. Xiao
Y. Liu
G. Sun
W. Ju
C. Liu
M. Mu
J. Li
Y. Zhou
X. Li
Y. Liu
H. Chen
A global 5&thinsp;km monthly potential evapotranspiration dataset (1982–2015) estimated by the Shuttleworth–Wallace model
Earth System Science Data
title A global 5&thinsp;km monthly potential evapotranspiration dataset (1982–2015) estimated by the Shuttleworth–Wallace model
title_full A global 5&thinsp;km monthly potential evapotranspiration dataset (1982–2015) estimated by the Shuttleworth–Wallace model
title_fullStr A global 5&thinsp;km monthly potential evapotranspiration dataset (1982–2015) estimated by the Shuttleworth–Wallace model
title_full_unstemmed A global 5&thinsp;km monthly potential evapotranspiration dataset (1982–2015) estimated by the Shuttleworth–Wallace model
title_short A global 5&thinsp;km monthly potential evapotranspiration dataset (1982–2015) estimated by the Shuttleworth–Wallace model
title_sort global 5 thinsp km monthly potential evapotranspiration dataset 1982 2015 estimated by the shuttleworth wallace model
url https://essd.copernicus.org/articles/15/4849/2023/essd-15-4849-2023.pdf
work_keys_str_mv AT ssun aglobal5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT zbi aglobal5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT jxiao aglobal5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT yliu aglobal5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT gsun aglobal5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT wju aglobal5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT cliu aglobal5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT mmu aglobal5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT jli aglobal5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT yzhou aglobal5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT xli aglobal5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT yliu aglobal5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT hchen aglobal5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT ssun global5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT zbi global5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT jxiao global5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT yliu global5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT gsun global5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT wju global5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT cliu global5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT mmu global5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT jli global5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT yzhou global5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT xli global5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT yliu global5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel
AT hchen global5thinspkmmonthlypotentialevapotranspirationdataset19822015estimatedbytheshuttleworthwallacemodel