Ruled and Quadric Surfaces Satisfying Δ<sup><i>II</i></sup><i>N</i> = <i>ΛN</i>

In the 3-dimensional Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mn>3</mn></msup></semantics></math></inline-formula>, a quadr...

Full description

Bibliographic Details
Main Authors: Hassan Al-Zoubi, Tareq Hamadneh, Ma’mon Abu Hammad, Mutaz Al-Sabbagh, Mehmet Ozdemir
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/2/300
_version_ 1797618066984534016
author Hassan Al-Zoubi
Tareq Hamadneh
Ma’mon Abu Hammad
Mutaz Al-Sabbagh
Mehmet Ozdemir
author_facet Hassan Al-Zoubi
Tareq Hamadneh
Ma’mon Abu Hammad
Mutaz Al-Sabbagh
Mehmet Ozdemir
author_sort Hassan Al-Zoubi
collection DOAJ
description In the 3-dimensional Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mn>3</mn></msup></semantics></math></inline-formula>, a quadric surface is either ruled or of one of the following two kinds <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>=</mo><mi>a</mi><msup><mi>s</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mi>c</mi><mo>,</mo><mi>a</mi><mi>b</mi><mi>c</mi><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>=</mo><mfrac><mi>a</mi><mn>2</mn></mfrac><msup><mi>s</mi><mn>2</mn></msup><mo>+</mo><mfrac><mi>b</mi><mn>2</mn></mfrac><msup><mi>t</mi><mn>2</mn></msup><mo>,</mo><mi>a</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace width="4pt"></mspace><mi>b</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. In the present paper, we investigate these three kinds of surfaces whose Gauss map <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold-italic">N</mi></semantics></math></inline-formula> satisfies the property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mo>Δ</mo><mrow><mi>I</mi><mi>I</mi></mrow></msup><mi mathvariant="bold-italic">N</mi><mo>=</mo><mi>Λ</mi><mi mathvariant="bold-italic">N</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Λ</mi></semantics></math></inline-formula> is a square symmetric matrix of order 3, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mo>Δ</mo><mrow><mi>I</mi><mi>I</mi></mrow></msup></semantics></math></inline-formula> denotes the Laplace operator of the second fundamental form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>I</mi></mrow></semantics></math></inline-formula> of the surface. We prove that spheres with the nonzero symmetric matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Λ</mi></semantics></math></inline-formula>, and helicoids with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Λ</mi></semantics></math></inline-formula> as the corresponding zero matrix, are the only classes of surfaces satisfying the above given property.
first_indexed 2024-03-11T08:04:59Z
format Article
id doaj.art-7efa37c9e95948dfbd411e4eced511fb
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-11T08:04:59Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-7efa37c9e95948dfbd411e4eced511fb2023-11-16T23:31:29ZengMDPI AGSymmetry2073-89942023-01-0115230010.3390/sym15020300Ruled and Quadric Surfaces Satisfying Δ<sup><i>II</i></sup><i>N</i> = <i>ΛN</i>Hassan Al-Zoubi0Tareq Hamadneh1Ma’mon Abu Hammad2Mutaz Al-Sabbagh3Mehmet Ozdemir4Department of Mathematics, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, JordanDepartment of Mathematics, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, JordanDepartment of Mathematics, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, JordanDepartment of Basic Engineering Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi ArabiaDepartment of Basic Engineering Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi ArabiaIn the 3-dimensional Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mn>3</mn></msup></semantics></math></inline-formula>, a quadric surface is either ruled or of one of the following two kinds <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>=</mo><mi>a</mi><msup><mi>s</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mi>c</mi><mo>,</mo><mi>a</mi><mi>b</mi><mi>c</mi><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>=</mo><mfrac><mi>a</mi><mn>2</mn></mfrac><msup><mi>s</mi><mn>2</mn></msup><mo>+</mo><mfrac><mi>b</mi><mn>2</mn></mfrac><msup><mi>t</mi><mn>2</mn></msup><mo>,</mo><mi>a</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace width="4pt"></mspace><mi>b</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. In the present paper, we investigate these three kinds of surfaces whose Gauss map <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold-italic">N</mi></semantics></math></inline-formula> satisfies the property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mo>Δ</mo><mrow><mi>I</mi><mi>I</mi></mrow></msup><mi mathvariant="bold-italic">N</mi><mo>=</mo><mi>Λ</mi><mi mathvariant="bold-italic">N</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Λ</mi></semantics></math></inline-formula> is a square symmetric matrix of order 3, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mo>Δ</mo><mrow><mi>I</mi><mi>I</mi></mrow></msup></semantics></math></inline-formula> denotes the Laplace operator of the second fundamental form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>I</mi></mrow></semantics></math></inline-formula> of the surface. We prove that spheres with the nonzero symmetric matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Λ</mi></semantics></math></inline-formula>, and helicoids with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Λ</mi></semantics></math></inline-formula> as the corresponding zero matrix, are the only classes of surfaces satisfying the above given property.https://www.mdpi.com/2073-8994/15/2/300ruled surfacesquadric surfacessurfaces of coordinate finite type in Euclidean 3-spaceLaplace operator
spellingShingle Hassan Al-Zoubi
Tareq Hamadneh
Ma’mon Abu Hammad
Mutaz Al-Sabbagh
Mehmet Ozdemir
Ruled and Quadric Surfaces Satisfying Δ<sup><i>II</i></sup><i>N</i> = <i>ΛN</i>
Symmetry
ruled surfaces
quadric surfaces
surfaces of coordinate finite type in Euclidean 3-space
Laplace operator
title Ruled and Quadric Surfaces Satisfying Δ<sup><i>II</i></sup><i>N</i> = <i>ΛN</i>
title_full Ruled and Quadric Surfaces Satisfying Δ<sup><i>II</i></sup><i>N</i> = <i>ΛN</i>
title_fullStr Ruled and Quadric Surfaces Satisfying Δ<sup><i>II</i></sup><i>N</i> = <i>ΛN</i>
title_full_unstemmed Ruled and Quadric Surfaces Satisfying Δ<sup><i>II</i></sup><i>N</i> = <i>ΛN</i>
title_short Ruled and Quadric Surfaces Satisfying Δ<sup><i>II</i></sup><i>N</i> = <i>ΛN</i>
title_sort ruled and quadric surfaces satisfying δ sup i ii i sup i n i i λn i
topic ruled surfaces
quadric surfaces
surfaces of coordinate finite type in Euclidean 3-space
Laplace operator
url https://www.mdpi.com/2073-8994/15/2/300
work_keys_str_mv AT hassanalzoubi ruledandquadricsurfacessatisfyingdsupiiiisupiniilni
AT tareqhamadneh ruledandquadricsurfacessatisfyingdsupiiiisupiniilni
AT mamonabuhammad ruledandquadricsurfacessatisfyingdsupiiiisupiniilni
AT mutazalsabbagh ruledandquadricsurfacessatisfyingdsupiiiisupiniilni
AT mehmetozdemir ruledandquadricsurfacessatisfyingdsupiiiisupiniilni