AN IDENTITY ON SYMMETRIC POLYNOMIALS

In this paper, we propose and prove an identity on symmetric polynomials. In order to obtain this identity, we use the interpolation theory, in particular, the Lagrange interpolation formula. In the proof of the identity, we propose two different proofs. The second proof will be the first step for o...

Full description

Bibliographic Details
Main Authors: Đặng Tuấn Hiệp, Lê Văn Vĩnh
Format: Article
Language:English
Published: Dalat University 2020-06-01
Series:Tạp chí Khoa học Đại học Đà Lạt
Subjects:
Online Access:http://tckh.dlu.edu.vn/index.php/tckhdhdl/article/view/684
_version_ 1818302490315063296
author Đặng Tuấn Hiệp
Lê Văn Vĩnh
author_facet Đặng Tuấn Hiệp
Lê Văn Vĩnh
author_sort Đặng Tuấn Hiệp
collection DOAJ
description In this paper, we propose and prove an identity on symmetric polynomials. In order to obtain this identity, we use the interpolation theory, in particular, the Lagrange interpolation formula. In the proof of the identity, we propose two different proofs. The second proof will be the first step for our further studies related to identities on symmetric polynomials.
first_indexed 2024-12-13T05:39:44Z
format Article
id doaj.art-7f0376b39bdc461ab13939ba80de7779
institution Directory Open Access Journal
issn 0866-787X
0866-787X
language English
last_indexed 2024-12-13T05:39:44Z
publishDate 2020-06-01
publisher Dalat University
record_format Article
series Tạp chí Khoa học Đại học Đà Lạt
spelling doaj.art-7f0376b39bdc461ab13939ba80de77792022-12-21T23:57:49ZengDalat UniversityTạp chí Khoa học Đại học Đà Lạt0866-787X0866-787X2020-06-0110214515210.37569/DalatUniversity.10.2.684(2020)328AN IDENTITY ON SYMMETRIC POLYNOMIALSĐặng Tuấn Hiệp0Lê Văn Vĩnh1Trường Đại học Đà LạtTrường Đại học Văn LangIn this paper, we propose and prove an identity on symmetric polynomials. In order to obtain this identity, we use the interpolation theory, in particular, the Lagrange interpolation formula. In the proof of the identity, we propose two different proofs. The second proof will be the first step for our further studies related to identities on symmetric polynomials.http://tckh.dlu.edu.vn/index.php/tckhdhdl/article/view/684công thức nội suy lagrangeđa thức đối xứnglý thuyết nội suy.
spellingShingle Đặng Tuấn Hiệp
Lê Văn Vĩnh
AN IDENTITY ON SYMMETRIC POLYNOMIALS
Tạp chí Khoa học Đại học Đà Lạt
công thức nội suy lagrange
đa thức đối xứng
lý thuyết nội suy.
title AN IDENTITY ON SYMMETRIC POLYNOMIALS
title_full AN IDENTITY ON SYMMETRIC POLYNOMIALS
title_fullStr AN IDENTITY ON SYMMETRIC POLYNOMIALS
title_full_unstemmed AN IDENTITY ON SYMMETRIC POLYNOMIALS
title_short AN IDENTITY ON SYMMETRIC POLYNOMIALS
title_sort identity on symmetric polynomials
topic công thức nội suy lagrange
đa thức đối xứng
lý thuyết nội suy.
url http://tckh.dlu.edu.vn/index.php/tckhdhdl/article/view/684
work_keys_str_mv AT đangtuanhiep anidentityonsymmetricpolynomials
AT levanvinh anidentityonsymmetricpolynomials
AT đangtuanhiep identityonsymmetricpolynomials
AT levanvinh identityonsymmetricpolynomials