Deflection Estimation Based on the Thermal Characteristics of Composite Deck Slabs Containing Macro-Synthetic Fibers

The purpose of this study was to evaluate the structural performance of composite deck slabs containing macro-synthetic fibers. after a fire by proposing a deflection estimation method for non-fireproof structural decks. Therefore, this study evaluated the fire resistance performance and deflection...

Full description

Bibliographic Details
Main Authors: Dong-Hee Son, Hyo-Jun Ahn, Joo-Hong Chung, Baek-Il Bae, Chang-Sik Choi
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/14/4052
Description
Summary:The purpose of this study was to evaluate the structural performance of composite deck slabs containing macro-synthetic fibers. after a fire by proposing a deflection estimation method for non-fireproof structural decks. Therefore, this study evaluated the fire resistance performance and deflection of deck slabs mixed with macro-synthetic fibers. Afterward, the deflection estimation method considering the thermal characteristics of concrete and deck plates was proposed. A material test was first conducted to evaluate the mechanical properties of concrete mixed with macro-synthetic fibers. This test found that the compressive strength and elasticity modulus of concrete mixed with macro-synthetic fibers was greater than that of general concrete. A flexural tensile test confirmed that residual strength was maintained after the maximum strength was achieved. The fire resistance of the deck slab was adequate even when a fire-resistant coating was not applied. The internal temperature was lowest for the specimen with macro-synthetic fibers. Deflection was evaluated using previously published equations and standards. The deflection evaluation confirmed that the temperature distribution should be applied differently in the estimation method that uses the thermal load of the deck slab.
ISSN:1996-1944