Investigation of the mechanical properties of polyimide fiber/polyamide 12 composites printed by Multi Jet Fusion

Multi Jet Fusion (MJF) has attracted extensive attention because of its ability to print support-free complex structures. However, the mechanical properties of MJF-printed polymer parts are still unsatisfactory for certain industrial requirements. Herein, by leveraging the fibre reinforcement effect...

Full description

Bibliographic Details
Main Authors: Mei Chen, Yanbei Hou, Ran An, Wei Shian Tey, Ming Gao, Jiayao Chen, Lihua Zhao, Kun Zhou
Format: Article
Language:English
Published: Taylor & Francis Group 2023-12-01
Series:Virtual and Physical Prototyping
Subjects:
Online Access:http://dx.doi.org/10.1080/17452759.2023.2246032
Description
Summary:Multi Jet Fusion (MJF) has attracted extensive attention because of its ability to print support-free complex structures. However, the mechanical properties of MJF-printed polymer parts are still unsatisfactory for certain industrial requirements. Herein, by leveraging the fibre reinforcement effect and high specific strength of polyimide (PI) fibres, this work developed PI/polyamide 12 (PA12) composites with largely enhanced mechanical performance via MJF. Specifically, the tensile strength and modulus were increased by 43% and 42%, and the flexural strength and modulus were improved by 39% and 46%, respectively, compared to those of the neat PA12 parts. Furthermore, the incorporation of lightweight PI fibres endowed the composites with high specific tensile strength (67.60 kN·m/kg) and specific flexural strength (93.70 kN·m/kg), which are superior to those of MJF-printed PA12 composites reinforced with other fibres. This work provides new insights into enhancing the mechanical performance of lightweight parts printed by MJF and other powder-based techniques.
ISSN:1745-2759
1745-2767