Characterization of Anaerobic Degradability and Kinetics of Harvested Submerged Aquatic Weeds Used for Nutrient Phytoremediation

In this study, eight different submerged aquatic species were screened by batch biochemical methane potential and anaerobic degradability tests to identify a promising/suitable feedstock. Kinetics of the best-screened substrate were studied in a mesophilic semi-continuous experiment. The aquatic spe...

Full description

Bibliographic Details
Main Authors: Takuro Kobayashi, Ya-Peng Wu, Zhi-Jiang Lu, Kai-Qin Xu
Format: Article
Language:English
Published: MDPI AG 2014-12-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/8/1/304
Description
Summary:In this study, eight different submerged aquatic species were screened by batch biochemical methane potential and anaerobic degradability tests to identify a promising/suitable feedstock. Kinetics of the best-screened substrate were studied in a mesophilic semi-continuous experiment. The aquatic species Myriophyllum aquaticum, Egeria densa and Potamogeton perfoliatus showed relatively higher methane yields of over 400 NmL/g-VS (volatile solids). Semi-continuous operation was carried out by feeding E. densa for over 400 days. The achieved results were 33%–53% chemical oxygen demand (COD) reduction and methane yield of 126–231 NmL/g-VS with a short hydraulic retention time (HRT). Additionally, the NH4+ and PO43− releases from the biomass to water were found to be low (18%–27% and 2.5%–3.9%) throughout the experiment. Hydrolysis was the limiting step in the digestion of E. densa, regardless of changes in HRT (15–45 days). The acid-phase model indicated that the hydrolysis rate constant (kh) of E. densa was 0.058 one/day, which was one third lower the kh value of food waste, but quite similar to cow manure.
ISSN:1996-1073