Sundew-Inspired Adhesive Hydrogel Threads through Reversible Complexation of Polyphenol and Boronic Acid

Adhesive hydrogels have been utilized as tissue sealants, hemostatic agents, and wound dressings, with the aim of replacing conventional sutures. To prevent immune response and serious inflammation from those hydrogels after sealing, natural biocompatible polysaccharides are widely used as a compone...

Full description

Bibliographic Details
Main Authors: Jae Hyuk Choi, Donghee Son, Mikyung Shin
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/18/8591
Description
Summary:Adhesive hydrogels have been utilized as tissue sealants, hemostatic agents, and wound dressings, with the aim of replacing conventional sutures. To prevent immune response and serious inflammation from those hydrogels after sealing, natural biocompatible polysaccharides are widely used as a component of the hydrogels. However, the weak mechanical strength, insufficient adhesiveness, and rapid dissociation of the hydrogels necessitates additional suturing at the wound site. In this study, we report on a solid polysaccharide thread reversibly crosslinked with boronic acid-polyphenol complexation and its adhesive gelation for complete tissue sealing without additional suturing. The polysaccharide adhesive suture threads demonstrated long-term stability, which is useful when used for skin wound suturing. Specifically, their robust adhesion property occurred as soon as the threads were soaked, attaining a swollen hydrogel state, dependent on the presence of body fluids after suturing. Moreover, the pH of the body fluids affects the viscoelasticity and adhesiveness of the hydrogels in order to ensure a tight sealing. Therefore, we expect that these pH-responsive adhesive threads would be promising for the development of on-demand functional suture materials.
ISSN:2076-3417