Joint Passive Detection and Tracking of Underwater Acoustic Target by Beamforming-Based Bernoulli Filter with Multiple Arrays

In this paper, improved Bernoulli filtering methods are developed to deal with the problem of joint passive detection and tracking of an underwater acoustic target with multiple arrays. Three different likelihood calculation methods based on local beamforming results are proposed for the Bernoulli f...

Full description

Bibliographic Details
Main Authors: Zhongyue Chen, Wen Xu
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/18/11/4022
Description
Summary:In this paper, improved Bernoulli filtering methods are developed to deal with the problem of joint passive detection and tracking of an underwater acoustic target with multiple arrays. Three different likelihood calculation methods based on local beamforming results are proposed for the Bernoulli filter updating. Firstly, multiple peaks, including both mainlobe and sidelobe peaks, are selected to form the direction-of-arrival (DOA) measurement set, and then the Bernoulli filter is used to extract the target track. Secondly, to make full use of the informations in the beamforming output, not only the DOAs but also their intensities, the beam powers are used as the input measurement sets of the filter, and an approach based on Pearson correlation coefficient (PCC) is developed for distinguishing between signal and noise. Lastly, a hybrid method of the former two is proposed in the case of fewer then three arrays. The tracking performances of the three methods are compared in simulations and experiment. The simulations with three distributed arrays show that, compared with the DOA-based method, the beam-based method and the hybrid method can both improve the target tracking accuracy. The processing results of the shallow water experimental data collected by two arrays show that the hybrid method can achieve a better tracking performance.
ISSN:1424-8220