THE POTENTIAL OF SENTINEL-1 DATA TO SUPPLEMENT HIGH RESOLUTION EARTH OBSERVATION DATA FOR MONITORING GREEN AREAS IN CITIES
Green areas play an important role within urban agglomerations due to their impact on local climate and their recreation function. For detailed monitoring, frameworks like the flora fauna habitat (FFH) classification scheme of the European Union’s Habitat Directive are broadly used. By date, FFH cla...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-06-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2021/567/2021/isprs-archives-XLIII-B3-2021-567-2021.pdf |
Summary: | Green areas play an important role within urban agglomerations due to their impact on local climate and their recreation function. For detailed monitoring, frameworks like the flora fauna habitat (FFH) classification scheme of the European Union’s Habitat Directive are broadly used. By date, FFH classifications are mostly expert-based. Within this study, a data-driven approach for FFH classification is tested. For two test areas in the municipality of Vienna, ALS point cloud data are used to derive predictor variables like terrain features, vegetation structure and potential insulation as well as reflection properties from full waveform analysis on a 1 m grid. In addition, Sentinel-1 C-Band time series data are used to increase the temporal resolution of the predicting features and to add phenological characteristics. For two 1.3 × 1.3 km test tiles, random forest classifiers are trained using different combinations (ALS, SAR, ALS+SAR) of input features. For all model test runs, the combination of ALS and SAR input features lead to best prediction accuracies when applied on test data. |
---|---|
ISSN: | 1682-1750 2194-9034 |