Multimodal fusion: A study on speech-text emotion recognition with the integration of deep learning
Recognition of various human emotions holds significant value in numerous real-world scenarios. This paper focuses on the multimodal fusion of speech and text for emotion recognition. A 39-dimensional Mel-frequency cepstral coefficient (MFCC) was used as a feature for speech emotion. A 300-dimension...
Główni autorzy: | Yanan Shang, Tianqi Fu |
---|---|
Format: | Artykuł |
Język: | English |
Wydane: |
Elsevier
2024-12-01
|
Seria: | Intelligent Systems with Applications |
Hasła przedmiotowe: | |
Dostęp online: | http://www.sciencedirect.com/science/article/pii/S2667305324001108 |
Podobne zapisy
-
Emotion recognition and achievement prediction for foreign language learners under the background of network teaching
od: Yi Ding, i wsp.
Wydane: (2022-10-01) -
Research on Dual-Emotion Feature Fusion and Performance Improvement in Rumor Detection
od: Wen Jiang, i wsp.
Wydane: (2024-09-01) -
Chinese Mathematical Knowledge Entity Recognition Based on Linguistically Motivated Bidirectional Encoder Representation from Transformers
od: Wei Song, i wsp.
Wydane: (2025-01-01) -
Named Entity Recognition for Chinese Texts on Marine Coral Reef Ecosystems Based on the BERT-BiGRU-Att-CRF Model
od: Danfeng Zhao, i wsp.
Wydane: (2024-07-01) -
A Framework to Evaluate Fusion Methods for Multimodal Emotion Recognition
od: Diego Pena, i wsp.
Wydane: (2023-01-01)