Multimodal fusion: A study on speech-text emotion recognition with the integration of deep learning

Recognition of various human emotions holds significant value in numerous real-world scenarios. This paper focuses on the multimodal fusion of speech and text for emotion recognition. A 39-dimensional Mel-frequency cepstral coefficient (MFCC) was used as a feature for speech emotion. A 300-dimension...

Descripció completa

Dades bibliogràfiques
Autors principals: Yanan Shang, Tianqi Fu
Format: Article
Idioma:English
Publicat: Elsevier 2024-12-01
Col·lecció:Intelligent Systems with Applications
Matèries:
Accés en línia:http://www.sciencedirect.com/science/article/pii/S2667305324001108

Ítems similars