Multimodal fusion: A study on speech-text emotion recognition with the integration of deep learning
Recognition of various human emotions holds significant value in numerous real-world scenarios. This paper focuses on the multimodal fusion of speech and text for emotion recognition. A 39-dimensional Mel-frequency cepstral coefficient (MFCC) was used as a feature for speech emotion. A 300-dimension...
Hlavní autoři: | Yanan Shang, Tianqi Fu |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Elsevier
2024-12-01
|
Edice: | Intelligent Systems with Applications |
Témata: | |
On-line přístup: | http://www.sciencedirect.com/science/article/pii/S2667305324001108 |
Podobné jednotky
-
Emotion recognition and achievement prediction for foreign language learners under the background of network teaching
Autor: Yi Ding, a další
Vydáno: (2022-10-01) -
Research on Dual-Emotion Feature Fusion and Performance Improvement in Rumor Detection
Autor: Wen Jiang, a další
Vydáno: (2024-09-01) -
Chinese Mathematical Knowledge Entity Recognition Based on Linguistically Motivated Bidirectional Encoder Representation from Transformers
Autor: Wei Song, a další
Vydáno: (2025-01-01) -
Named Entity Recognition for Chinese Texts on Marine Coral Reef Ecosystems Based on the BERT-BiGRU-Att-CRF Model
Autor: Danfeng Zhao, a další
Vydáno: (2024-07-01) -
A Framework to Evaluate Fusion Methods for Multimodal Emotion Recognition
Autor: Diego Pena, a další
Vydáno: (2023-01-01)