Multimodal fusion: A study on speech-text emotion recognition with the integration of deep learning
Recognition of various human emotions holds significant value in numerous real-world scenarios. This paper focuses on the multimodal fusion of speech and text for emotion recognition. A 39-dimensional Mel-frequency cepstral coefficient (MFCC) was used as a feature for speech emotion. A 300-dimension...
Главные авторы: | Yanan Shang, Tianqi Fu |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
Elsevier
2024-12-01
|
Серии: | Intelligent Systems with Applications |
Предметы: | |
Online-ссылка: | http://www.sciencedirect.com/science/article/pii/S2667305324001108 |
Схожие документы
-
Emotion recognition and achievement prediction for foreign language learners under the background of network teaching
по: Yi Ding, и др.
Опубликовано: (2022-10-01) -
Research on Dual-Emotion Feature Fusion and Performance Improvement in Rumor Detection
по: Wen Jiang, и др.
Опубликовано: (2024-09-01) -
Chinese Mathematical Knowledge Entity Recognition Based on Linguistically Motivated Bidirectional Encoder Representation from Transformers
по: Wei Song, и др.
Опубликовано: (2025-01-01) -
Named Entity Recognition for Chinese Texts on Marine Coral Reef Ecosystems Based on the BERT-BiGRU-Att-CRF Model
по: Danfeng Zhao, и др.
Опубликовано: (2024-07-01) -
Microblog Text Emotion Classification Algorithm Based on TCN-BiGRU and Dual Attention
по: Yao Qin, и др.
Опубликовано: (2023-02-01)