Multimodal fusion: A study on speech-text emotion recognition with the integration of deep learning
Recognition of various human emotions holds significant value in numerous real-world scenarios. This paper focuses on the multimodal fusion of speech and text for emotion recognition. A 39-dimensional Mel-frequency cepstral coefficient (MFCC) was used as a feature for speech emotion. A 300-dimension...
Автори: | Yanan Shang, Tianqi Fu |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Elsevier
2024-12-01
|
Серія: | Intelligent Systems with Applications |
Предмети: | |
Онлайн доступ: | http://www.sciencedirect.com/science/article/pii/S2667305324001108 |
Схожі ресурси
Схожі ресурси
-
Emotion recognition and achievement prediction for foreign language learners under the background of network teaching
за авторством: Yi Ding, та інші
Опубліковано: (2022-10-01) -
Research on Dual-Emotion Feature Fusion and Performance Improvement in Rumor Detection
за авторством: Wen Jiang, та інші
Опубліковано: (2024-09-01) -
Chinese Mathematical Knowledge Entity Recognition Based on Linguistically Motivated Bidirectional Encoder Representation from Transformers
за авторством: Wei Song, та інші
Опубліковано: (2025-01-01) -
Named Entity Recognition for Chinese Texts on Marine Coral Reef Ecosystems Based on the BERT-BiGRU-Att-CRF Model
за авторством: Danfeng Zhao, та інші
Опубліковано: (2024-07-01) -
Microblog Text Emotion Classification Algorithm Based on TCN-BiGRU and Dual Attention
за авторством: Yao Qin, та інші
Опубліковано: (2023-02-01)