Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computation

Let $l_{\infty}^3=\mathbb{R}^3$ be endowed with the supremum norm. In [Comment. Math. 2017,  57 (1), 1-7], S.G. Kim classified the extreme points of the unit ball of ${\mathcal L}_s(^2l_{\infty}^3)$ only using Mathematica 8, where ${\mathcal L}_s(^2l_{\infty}^3)$ is the space of symmetric bilinear f...

Full description

Bibliographic Details
Main Author: Sung Guen Kim
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2022-11-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/4794
_version_ 1797205794515582976
author Sung Guen Kim
author_facet Sung Guen Kim
author_sort Sung Guen Kim
collection DOAJ
description Let $l_{\infty}^3=\mathbb{R}^3$ be endowed with the supremum norm. In [Comment. Math. 2017,  57 (1), 1-7], S.G. Kim classified the extreme points of the unit ball of ${\mathcal L}_s(^2l_{\infty}^3)$ only using Mathematica 8, where ${\mathcal L}_s(^2l_{\infty}^3)$ is the space of symmetric bilinear forms on $l_{\infty}^3$. It seems to be interesting and meaningful to classify the extreme points of the unit ball of ${\mathcal L}_s(^2l_{\infty}^3)$ without using Mathematica 8. The aim of this paper is to make such classification by mathematical calculations.
first_indexed 2024-04-24T08:56:47Z
format Article
id doaj.art-7f8900b513c34e6ba4ec8346103307c9
institution Directory Open Access Journal
issn 2075-9827
2313-0210
language English
last_indexed 2024-04-24T08:56:47Z
publishDate 2022-11-01
publisher Vasyl Stefanyk Precarpathian National University
record_format Article
series Karpatsʹkì Matematičnì Publìkacìï
spelling doaj.art-7f8900b513c34e6ba4ec8346103307c92024-04-16T07:12:26ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102022-11-0114237138710.15330/cmp.14.2.371-3874172Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computationSung Guen Kim0Kyungpook National University, 41566, Daegu, South KoreaLet $l_{\infty}^3=\mathbb{R}^3$ be endowed with the supremum norm. In [Comment. Math. 2017,  57 (1), 1-7], S.G. Kim classified the extreme points of the unit ball of ${\mathcal L}_s(^2l_{\infty}^3)$ only using Mathematica 8, where ${\mathcal L}_s(^2l_{\infty}^3)$ is the space of symmetric bilinear forms on $l_{\infty}^3$. It seems to be interesting and meaningful to classify the extreme points of the unit ball of ${\mathcal L}_s(^2l_{\infty}^3)$ without using Mathematica 8. The aim of this paper is to make such classification by mathematical calculations.https://journals.pnu.edu.ua/index.php/cmp/article/view/4794extreme point
spellingShingle Sung Guen Kim
Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computation
Karpatsʹkì Matematičnì Publìkacìï
extreme point
title Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computation
title_full Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computation
title_fullStr Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computation
title_full_unstemmed Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computation
title_short Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computation
title_sort classification of the extreme points of mathcal l s 2l infty 3 by computation
topic extreme point
url https://journals.pnu.edu.ua/index.php/cmp/article/view/4794
work_keys_str_mv AT sungguenkim classificationoftheextremepointsofmathcalls2linfty3bycomputation