Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computation
Let $l_{\infty}^3=\mathbb{R}^3$ be endowed with the supremum norm. In [Comment. Math. 2017, 57 (1), 1-7], S.G. Kim classified the extreme points of the unit ball of ${\mathcal L}_s(^2l_{\infty}^3)$ only using Mathematica 8, where ${\mathcal L}_s(^2l_{\infty}^3)$ is the space of symmetric bilinear f...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2022-11-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Subjects: | |
Online Access: | https://journals.pnu.edu.ua/index.php/cmp/article/view/4794 |
_version_ | 1797205794515582976 |
---|---|
author | Sung Guen Kim |
author_facet | Sung Guen Kim |
author_sort | Sung Guen Kim |
collection | DOAJ |
description | Let $l_{\infty}^3=\mathbb{R}^3$ be endowed with the supremum norm. In [Comment. Math. 2017, 57 (1), 1-7], S.G. Kim classified the extreme points of the unit ball of ${\mathcal L}_s(^2l_{\infty}^3)$ only using Mathematica 8, where ${\mathcal L}_s(^2l_{\infty}^3)$ is the space of symmetric bilinear forms on $l_{\infty}^3$. It seems to be interesting and meaningful to classify the extreme points of the unit ball of ${\mathcal L}_s(^2l_{\infty}^3)$ without using Mathematica 8. The aim of this paper is to make such classification by mathematical calculations. |
first_indexed | 2024-04-24T08:56:47Z |
format | Article |
id | doaj.art-7f8900b513c34e6ba4ec8346103307c9 |
institution | Directory Open Access Journal |
issn | 2075-9827 2313-0210 |
language | English |
last_indexed | 2024-04-24T08:56:47Z |
publishDate | 2022-11-01 |
publisher | Vasyl Stefanyk Precarpathian National University |
record_format | Article |
series | Karpatsʹkì Matematičnì Publìkacìï |
spelling | doaj.art-7f8900b513c34e6ba4ec8346103307c92024-04-16T07:12:26ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102022-11-0114237138710.15330/cmp.14.2.371-3874172Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computationSung Guen Kim0Kyungpook National University, 41566, Daegu, South KoreaLet $l_{\infty}^3=\mathbb{R}^3$ be endowed with the supremum norm. In [Comment. Math. 2017, 57 (1), 1-7], S.G. Kim classified the extreme points of the unit ball of ${\mathcal L}_s(^2l_{\infty}^3)$ only using Mathematica 8, where ${\mathcal L}_s(^2l_{\infty}^3)$ is the space of symmetric bilinear forms on $l_{\infty}^3$. It seems to be interesting and meaningful to classify the extreme points of the unit ball of ${\mathcal L}_s(^2l_{\infty}^3)$ without using Mathematica 8. The aim of this paper is to make such classification by mathematical calculations.https://journals.pnu.edu.ua/index.php/cmp/article/view/4794extreme point |
spellingShingle | Sung Guen Kim Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computation Karpatsʹkì Matematičnì Publìkacìï extreme point |
title | Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computation |
title_full | Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computation |
title_fullStr | Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computation |
title_full_unstemmed | Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computation |
title_short | Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computation |
title_sort | classification of the extreme points of mathcal l s 2l infty 3 by computation |
topic | extreme point |
url | https://journals.pnu.edu.ua/index.php/cmp/article/view/4794 |
work_keys_str_mv | AT sungguenkim classificationoftheextremepointsofmathcalls2linfty3bycomputation |