Hyperspectral Unmixing Using Robust Deep Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) and its numerous variants have been extensively studied and used in hyperspectral unmixing (HU). With the aid of the designed deep structure, deep NMF-based methods demonstrate advantages in exploring the hierarchical features of complex data. However, a noise...

Full description

Bibliographic Details
Main Authors: Risheng Huang, Huiyun Jiao, Xiaorun Li, Shuhan Chen, Chaoqun Xia
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/11/2900
Description
Summary:Nonnegative matrix factorization (NMF) and its numerous variants have been extensively studied and used in hyperspectral unmixing (HU). With the aid of the designed deep structure, deep NMF-based methods demonstrate advantages in exploring the hierarchical features of complex data. However, a noise corruption problem commonly exists in hyperspectral data and severely degrades the unmixing performance of deep NMF-based methods when applied to HU. In this study, we propose an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">ℓ</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> norm-based robust deep nonnegative matrix factorization (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">ℓ</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula>-RDNMF) for HU, which incorporates an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">ℓ</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> norm into the two stages of the deep structure to achieve robustness. The multiplicative updating rules of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">ℓ</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula>-RDNMF are efficiently learned and provided. The efficiency of the presented method is verified in experiments using both synthetic and genuine data.
ISSN:2072-4292