Stimulus-timing dependent multisensory plasticity in the guinea pig dorsal cochlear nucleus.

Multisensory neurons in the dorsal cochlear nucleus (DCN) show long-lasting enhancement or suppression of sound-evoked responses when stimulated with combined somatosensory-auditory stimulation. By varying the intervals between sound and somatosensory stimuli we show for the first time in vivo that...

Full description

Bibliographic Details
Main Authors: Seth D Koehler, Susan E Shore
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3603886?pdf=render
Description
Summary:Multisensory neurons in the dorsal cochlear nucleus (DCN) show long-lasting enhancement or suppression of sound-evoked responses when stimulated with combined somatosensory-auditory stimulation. By varying the intervals between sound and somatosensory stimuli we show for the first time in vivo that DCN bimodal responses are influenced by stimulus-timing dependent plasticity. The timing rules and time courses of the observed stimulus-timing dependent plasticity closely mimic those of spike-timing dependent plasticity that have been demonstrated in vitro at parallel-fiber synapses onto DCN principal cells. Furthermore, the degree of inhibition in a neuron influences whether that neuron has Hebbian or anti-Hebbian timing rules. As demonstrated in other cerebellar-like circuits, anti-Hebbian timing rules reflect adaptive filtering, which in the DCN would result in suppression of sound-evoked responses that are predicted by activation of somatosensory inputs, leading to the suppression of body-generated signals such as self-vocalization.
ISSN:1932-6203