Investigation of periodic characteristics of perturbed flow over a slender body

The asymmetric flow over a slender body was particularly sensitive to the nose at a high angle of attack (AoA). Two patterns of separation occurred on the noses of the pointed-nosed slender body and blunt-nosed slender body as open- and close-type separation, respectively. The effects of the bluntne...

Full description

Bibliographic Details
Main Authors: Li Zhao, Yankui Wang, Zhongyang Qi
Format: Article
Language:English
Published: Elsevier 2023-05-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844023034011
Description
Summary:The asymmetric flow over a slender body was particularly sensitive to the nose at a high angle of attack (AoA). Two patterns of separation occurred on the noses of the pointed-nosed slender body and blunt-nosed slender body as open- and close-type separation, respectively. The effects of the bluntness were investigated at high AoA (α = 50°) to clarify the evolution of the separated pattern from open-to close-type separation by the nose and by the periodic characteristics of perturbed flow. Wind tunnel experimental tests were conducted to investigate the periodic characteristics of asymmetric flow at a Reynolds number ReD = 1.54 × 105, based on incoming free-stream velocity (U∞) and the diameter (D) of the model. A particle was attached to the tip of the nose to induce the perturbed flow and attain a definite and predictable asymmetric flow in experimental tests. The pressure scanning and surface oil-flow visualization techniques were used to capture the pressure distributions and flow separations. The major findings were that axial flow increases with the increase of bluntness, resulting in open-type separation turning into close-type separation, and the perturbation moved from downstream to upstream of starting points of the separation line. The critical bluntness of separation pattern switching from open-type to close-type located between 1.5 and 3. Thus, the management of perturbation on asymmetric flow pattern switched from directly participating in separation to influencing separation through micro-flow. Therefore, the locations of perturbation and starting points of the separation line were closely related to asymmetric flow management by perturbation, then affecting the periodic characteristics of perturbed flow.
ISSN:2405-8440