Comparing the Maximum Load Capacity and Modes of Failure of Original Equipment Manufactured and Aftermarket Titanium Abutments in Internal Hexagonal Implants

The purpose of this in vitro study is to compare the maximum load capacity and modes of failure under static loading in three types of titanium abutments (n = 3) with different processes or manufacturers. The Pre-Ti group consists of prefabricated titanium abutments from original equipment manufactu...

Full description

Bibliographic Details
Main Authors: Yutsen Chang, Yuling Wu, Hungshyong Chen, Minghsu Tsai, Chiachen Chang, Aaron Yujen Wu
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/10/5/556
Description
Summary:The purpose of this in vitro study is to compare the maximum load capacity and modes of failure under static loading in three types of titanium abutments (n = 3) with different processes or manufacturers. The Pre-Ti group consists of prefabricated titanium abutments from original equipment manufacturers (OEM), the CAD-Ti group consists of OEM titanium abutments fabricated with computer-assisted design/manufacturing (CAD/CAM) technique, and the AM-Ti group is CAD/CAM titanium abutment made by aftermarket manufacturers. A full zirconia crown was fabricated and cemented to each abutment. An all-electric dynamic test instrument was used to place loading on the zirconia crown with a crosshead speed set at 1 mm/min. The mean maximum load capacity of both OEM titanium abutments was significantly higher than the aftermarket titanium abutments. All these three types of implant–abutment complexes exhibited similar modes of failure, which included deformation of the abutment and implant, fracture of the abutment and retentive screw.
ISSN:2075-4701