Effect of Different Gradings of Lightweight Aggregates on the Properties of Concrete

Lightweight aggregate concrete is a material with very low density and good thermal insulation, and several types of lightweight aggregates have been used for lightweight concrete. Since the characteristics of lightweight aggregates strongly affect the properties of lightweight concrete, a proper co...

Full description

Bibliographic Details
Main Authors: Sang-Yeop Chung, Mohamed Abd Elrahman, Dietmar Stephan
Format: Article
Language:English
Published: MDPI AG 2017-06-01
Series:Applied Sciences
Subjects:
Online Access:http://www.mdpi.com/2076-3417/7/6/585
Description
Summary:Lightweight aggregate concrete is a material with very low density and good thermal insulation, and several types of lightweight aggregates have been used for lightweight concrete. Since the characteristics of lightweight aggregates strongly affect the properties of lightweight concrete, a proper consideration for the use of lightweight aggregate is very important for development of lightweight materials. In particular, the sizes and spatial distributions of lightweight aggregates can influence the material responses of lightweight concrete, such as compressive strength and thermal conductivity. In this study, different types of gradings of lightweight aggregates are adopted to investigate the effect of gradings on the material properties. Liaver ® , an expanded glass granulate, is used as a lightweight aggregate for the specimens. Virtual models of the lightweight specimens with different gradings are numerically generated, and both mechanical and thermal properties are evaluated using experimental and numerical approaches for more detailed investigation. The obtained results can be utilized to suggest an optimal grading that satisfies both the mechanical and thermal properties of lightweight concrete specimen.
ISSN:2076-3417