On criticality coupled sub-Laplacian systems with Hardy type potentials on Stratified Lie groups
<p>In this work, our main concern is to study the existence and multiplicity of solutions for the following sub-elliptic system with Hardy type potentials and multiple critical exponents on Carnot group</p> <p class="disp_formula">$ \begin{equation*} \left\{\begin{alig...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2023-03-01
|
Series: | Communications in Analysis and Mechanics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/cam.2023005?viewType=HTML |
_version_ | 1827386931748536320 |
---|---|
author | Jinguo Zhang Shuhai Zhu |
author_facet | Jinguo Zhang Shuhai Zhu |
author_sort | Jinguo Zhang |
collection | DOAJ |
description | <p>In this work, our main concern is to study the existence and multiplicity of solutions for the following sub-elliptic system with Hardy type potentials and multiple critical exponents on Carnot group</p>
<p class="disp_formula">$ \begin{equation*} \left\{\begin{aligned} &-\Delta_{\mathbb{G}}u = \frac{\psi^{\alpha}|u|^{2^*(\alpha)-2}u}{d(z)^{\alpha}}+ \frac{p_{1}}{2^*(\gamma)}\frac{\psi^{\gamma}|u|^{p_{1}-2}u|v|^{p_{2}}}{d(z, z_{0})^{\gamma}} +\lambda h(z)\frac{\psi^{\sigma}|u|^{q-2}u}{d(z)^{\sigma}} \, \, & \text{in } \, \, \Omega, \\ &-\Delta_{\mathbb{G}}v = \frac{\psi^{\beta}|v|^{2^*(\beta)-2}v}{d(z)^{\beta}}+ \frac{p_{2}}{2^*(\gamma)}\frac{\psi^{\gamma}|u|^{p_{1}}|v|^{p_{2}-2}v}{d(z, z_{0})^{\gamma}} +\lambda h(z)\frac{\psi^{\sigma}|v|^{q-2}v}{d(z)^{\sigma}}\, \, &\text{in } \, \, \Omega, \\ &\quad u = v = 0\, \, &\text{on } \, \, \partial\Omega, \end{aligned}\right. \end{equation*} $</p>
<p>where $ -\Delta_{\mathbb{G}} $ is a sub-Laplacian on Carnot group $ \mathbb{G} $, $ \alpha, \beta, \gamma, \sigma\in [0, 2) $, $ d $ is the $ \Delta_{\mathbb{G}} $-natural gauge, $ \psi = |\nabla_{\mathbb{G}}d| $ and $ \nabla_{\mathbb{G}} $ is the horizontal gradient associated to $ \Delta_{\mathbb{G}} $. The positive parameters $ \lambda $, $ q $ satisfy $ 0 < \lambda < \infty $, $ 1 < q < 2 $, and $ p_{1} $, $ p_{2} > 1 $ with $ p_{1}+p_{2} = 2^*(\gamma) $, here $ 2^*(\alpha): = \frac{2(Q-\alpha)}{Q-2} $, $ 2^*(\beta): = \frac{2(Q-\beta)}{Q-2} $ and $ 2^*(\gamma) = \frac{2(Q-\gamma)}{Q-2} $ are the critical Hardy-Sobolev exponents, $ Q $ is the homogeneous dimension of the space $ \mathbb{G} $. By means of variational methods and the mountain-pass theorem of Ambrosetti and Rabonowitz, we study the existence of multiple solutions to the sub-elliptic system.</p> |
first_indexed | 2024-03-08T15:53:43Z |
format | Article |
id | doaj.art-7fc1e1f08bcc4b4eb45588dcb2d23080 |
institution | Directory Open Access Journal |
issn | 2836-3310 |
language | English |
last_indexed | 2024-03-08T15:53:43Z |
publishDate | 2023-03-01 |
publisher | AIMS Press |
record_format | Article |
series | Communications in Analysis and Mechanics |
spelling | doaj.art-7fc1e1f08bcc4b4eb45588dcb2d230802024-01-09T02:59:52ZengAIMS PressCommunications in Analysis and Mechanics2836-33102023-03-01152709010.3934/cam.2023005On criticality coupled sub-Laplacian systems with Hardy type potentials on Stratified Lie groupsJinguo Zhang 0Shuhai Zhu11. Jiangxi Provincial Center for Applied Mathematics & School of Mathematics and Statistics, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China2. College of Basic Science, Ningbo University of Finance and Economics, Ningbo, Zhejiang 315175, P. R. China<p>In this work, our main concern is to study the existence and multiplicity of solutions for the following sub-elliptic system with Hardy type potentials and multiple critical exponents on Carnot group</p> <p class="disp_formula">$ \begin{equation*} \left\{\begin{aligned} &-\Delta_{\mathbb{G}}u = \frac{\psi^{\alpha}|u|^{2^*(\alpha)-2}u}{d(z)^{\alpha}}+ \frac{p_{1}}{2^*(\gamma)}\frac{\psi^{\gamma}|u|^{p_{1}-2}u|v|^{p_{2}}}{d(z, z_{0})^{\gamma}} +\lambda h(z)\frac{\psi^{\sigma}|u|^{q-2}u}{d(z)^{\sigma}} \, \, & \text{in } \, \, \Omega, \\ &-\Delta_{\mathbb{G}}v = \frac{\psi^{\beta}|v|^{2^*(\beta)-2}v}{d(z)^{\beta}}+ \frac{p_{2}}{2^*(\gamma)}\frac{\psi^{\gamma}|u|^{p_{1}}|v|^{p_{2}-2}v}{d(z, z_{0})^{\gamma}} +\lambda h(z)\frac{\psi^{\sigma}|v|^{q-2}v}{d(z)^{\sigma}}\, \, &\text{in } \, \, \Omega, \\ &\quad u = v = 0\, \, &\text{on } \, \, \partial\Omega, \end{aligned}\right. \end{equation*} $</p> <p>where $ -\Delta_{\mathbb{G}} $ is a sub-Laplacian on Carnot group $ \mathbb{G} $, $ \alpha, \beta, \gamma, \sigma\in [0, 2) $, $ d $ is the $ \Delta_{\mathbb{G}} $-natural gauge, $ \psi = |\nabla_{\mathbb{G}}d| $ and $ \nabla_{\mathbb{G}} $ is the horizontal gradient associated to $ \Delta_{\mathbb{G}} $. The positive parameters $ \lambda $, $ q $ satisfy $ 0 < \lambda < \infty $, $ 1 < q < 2 $, and $ p_{1} $, $ p_{2} > 1 $ with $ p_{1}+p_{2} = 2^*(\gamma) $, here $ 2^*(\alpha): = \frac{2(Q-\alpha)}{Q-2} $, $ 2^*(\beta): = \frac{2(Q-\beta)}{Q-2} $ and $ 2^*(\gamma) = \frac{2(Q-\gamma)}{Q-2} $ are the critical Hardy-Sobolev exponents, $ Q $ is the homogeneous dimension of the space $ \mathbb{G} $. By means of variational methods and the mountain-pass theorem of Ambrosetti and Rabonowitz, we study the existence of multiple solutions to the sub-elliptic system.</p>https://www.aimspress.com/article/doi/10.3934/cam.2023005?viewType=HTMLsub-laplacian systemcritical exponentshardy-type potentialcarnot groups |
spellingShingle | Jinguo Zhang Shuhai Zhu On criticality coupled sub-Laplacian systems with Hardy type potentials on Stratified Lie groups Communications in Analysis and Mechanics sub-laplacian system critical exponents hardy-type potential carnot groups |
title | On criticality coupled sub-Laplacian systems with Hardy type potentials on Stratified Lie groups |
title_full | On criticality coupled sub-Laplacian systems with Hardy type potentials on Stratified Lie groups |
title_fullStr | On criticality coupled sub-Laplacian systems with Hardy type potentials on Stratified Lie groups |
title_full_unstemmed | On criticality coupled sub-Laplacian systems with Hardy type potentials on Stratified Lie groups |
title_short | On criticality coupled sub-Laplacian systems with Hardy type potentials on Stratified Lie groups |
title_sort | on criticality coupled sub laplacian systems with hardy type potentials on stratified lie groups |
topic | sub-laplacian system critical exponents hardy-type potential carnot groups |
url | https://www.aimspress.com/article/doi/10.3934/cam.2023005?viewType=HTML |
work_keys_str_mv | AT jinguozhang oncriticalitycoupledsublaplaciansystemswithhardytypepotentialsonstratifiedliegroups AT shuhaizhu oncriticalitycoupledsublaplaciansystemswithhardytypepotentialsonstratifiedliegroups |