Variation in global chemical composition of PM<sub>2.5</sub>: emerging results from SPARTAN
The Surface PARTiculate mAtter Network (SPARTAN) is a long-term project that includes characterization of chemical and physical attributes of aerosols from filter samples collected worldwide. This paper discusses the ongoing efforts of SPARTAN to define and quantify major ions and trace metals f...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2016-08-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/16/9629/2016/acp-16-9629-2016.pdf |
_version_ | 1818263894706094080 |
---|---|
author | G. Snider C. L. Weagle K. K. Murdymootoo A. Ring Y. Ritchie E. Stone A. Walsh C. Akoshile N. X. Anh R. Balasubramanian J. Brook F. D. Qonitan J. Dong D. Griffith K. He B. N. Holben R. Kahn N. Lagrosas P. Lestari Z. Ma A. Misra L. K. Norford E. J. Quel A. Salam B. Schichtel L. Segev S. Tripathi C. Wang C. Yu Q. Zhang Y. Zhang M. Brauer A. Cohen M. D. Gibson Y. Liu J. V. Martins Y. Rudich R. V. Martin R. V. Martin R. V. Martin |
author_facet | G. Snider C. L. Weagle K. K. Murdymootoo A. Ring Y. Ritchie E. Stone A. Walsh C. Akoshile N. X. Anh R. Balasubramanian J. Brook F. D. Qonitan J. Dong D. Griffith K. He B. N. Holben R. Kahn N. Lagrosas P. Lestari Z. Ma A. Misra L. K. Norford E. J. Quel A. Salam B. Schichtel L. Segev S. Tripathi C. Wang C. Yu Q. Zhang Y. Zhang M. Brauer A. Cohen M. D. Gibson Y. Liu J. V. Martins Y. Rudich R. V. Martin R. V. Martin R. V. Martin |
author_sort | G. Snider |
collection | DOAJ |
description | The Surface PARTiculate mAtter Network (SPARTAN) is a long-term project that
includes characterization of chemical and physical attributes of aerosols
from filter samples collected worldwide. This paper discusses the
ongoing efforts of SPARTAN to define and quantify major ions and trace
metals found in fine particulate matter (PM<sub>2.5</sub>). Our methods infer the
spatial and temporal variability of PM<sub>2.5</sub> in a cost-effective manner.
Gravimetrically weighed filters represent multi-day averages of PM<sub>2.5</sub>,
with a collocated nephelometer sampling air continuously. SPARTAN
instruments are paired with AErosol RObotic NETwork (AERONET) sun
photometers to better understand the relationship between ground-level
PM<sub>2.5</sub> and columnar aerosol optical depth (AOD).<br><br>We have examined the chemical composition of PM<sub>2.5</sub> at 12 globally
dispersed, densely populated urban locations and a site at Mammoth Cave (US)
National Park used as a background comparison. So far, each SPARTAN location has
been active between the years 2013 and 2016 over periods of 2–26 months,
with an average period of 12 months per site. These sites have collectively
gathered over 10 years of quality aerosol data. The major PM<sub>2.5</sub>
constituents across all sites (relative contribution ± SD) are
ammoniated sulfate (20 % ± 11 %), crustal material (13.4 % ± 9.9 %), equivalent black carbon (11.9 % ± 8.4 %),
ammonium nitrate (4.7 % ± 3.0 %), sea salt (2.3 % ± 1.6 %), trace element oxides (1.0 % ± 1.1 %), water (7.2 % ± 3.3 %) at 35 % RH, and residual matter (40 % ± 24 %).<br><br>Analysis of filter samples reveals that several PM<sub>2.5</sub> chemical
components varied by more than an order of magnitude between sites.
Ammoniated sulfate ranges from 1.1 µg m<sup>−3</sup> (Buenos Aires,
Argentina) to 17 µg m<sup>−3</sup> (Kanpur, India in the dry season). Ammonium
nitrate ranged from 0.2 µg m<sup>−3</sup> (Mammoth Cave, in summer) to 6.8
µg m<sup>−3</sup> (Kanpur, dry season). Equivalent black carbon ranged from
0.7 µg m<sup>−3</sup> (Mammoth Cave) to over 8 µg m<sup>−3</sup> (Dhaka,
Bangladesh and Kanpur, India). Comparison of SPARTAN vs. coincident
measurements from the Interagency Monitoring of Protected Visual
Environments (IMPROVE) network at Mammoth Cave yielded a high degree of
consistency for daily PM<sub>2.5</sub> (<i>r</i><sup>2</sup> = 0.76, slope = 1.12), daily
sulfate (<i>r</i><sup>2</sup> = 0.86, slope = 1.03), and mean fractions of all major
PM<sub>2.5</sub> components (within 6 %). Major ions generally agree well with
previous studies at the same urban locations (e.g. sulfate fractions agree
within 4 % for 8 out of 11 collocation comparisons). Enhanced
anthropogenic dust fractions in large urban areas (e.g. Singapore, Kanpur,
Hanoi, and Dhaka) are apparent from high Zn : Al ratios.<br><br>The expected water contribution to aerosols is calculated via the
hygroscopicity parameter <i>κ</i><sub>v</sub> for each filter. Mean aggregate
values ranged from 0.15 (Ilorin) to 0.28 (Rehovot). The all-site parameter
mean is 0.20 ± 0.04. Chemical composition and water retention in each
filter measurement allows inference of hourly PM<sub>2.5</sub> at 35 % relative
humidity by merging with nephelometer measurements. These hourly PM<sub>2.5</sub>
estimates compare favourably with a beta attenuation monitor (MetOne) at the
nearby US embassy in Beijing, with a coefficient of variation <i>r</i><sup>2</sup> = 0.67 (<i>n</i> = 3167), compared to <i>r</i><sup>2</sup> = 0.62 when <i>κ</i><sub>v</sub> was
not considered. SPARTAN continues to provide an open-access database of
PM<sub>2.5</sub> compositional filter information and hourly mass collected from a
global federation of instruments. |
first_indexed | 2024-12-12T19:26:16Z |
format | Article |
id | doaj.art-7fc3dd1ebe244e259f0036f8c12fa72f |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-12T19:26:16Z |
publishDate | 2016-08-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-7fc3dd1ebe244e259f0036f8c12fa72f2022-12-22T00:14:31ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242016-08-01169629965310.5194/acp-16-9629-2016Variation in global chemical composition of PM<sub>2.5</sub>: emerging results from SPARTANG. Snider0C. L. Weagle1K. K. Murdymootoo2A. Ring3Y. Ritchie4E. Stone5A. Walsh6C. Akoshile7N. X. Anh8R. Balasubramanian9J. Brook10F. D. Qonitan11J. Dong12D. Griffith13K. He14B. N. Holben15R. Kahn16N. Lagrosas17P. Lestari18Z. Ma19A. Misra20L. K. Norford21E. J. Quel22A. Salam23B. Schichtel24L. Segev25S. Tripathi26C. Wang27C. Yu28Q. Zhang29Y. Zhang30M. Brauer31A. Cohen32M. D. Gibson33Y. Liu34J. V. Martins35Y. Rudich36R. V. Martin37R. V. Martin38R. V. Martin39Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, CanadaDepartment of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada Department of Physics, University of Ilorin, Ilorin, NigeriaInstitute of Geophysics, Vietnam Academy of Science and Technology, Hanoi, VietnamDepartment of Civil and Environmental Engineering, National University of Singapore, SingaporeDepartment of Public Health Sciences, University of Toronto, Toronto, Ontario, CanadaFaculty of Civil and Environmental Engineering, ITB, JL. Ganesha No.10, Bandung, IndonesiaCenter for Earth System Science, Tsinghua University, Beijing, ChinaCouncil for Scientific and Industrial Research (CSIR), Pretoria, South AfricaCenter for Earth System Science, Tsinghua University, Beijing, ChinaEarth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, USAEarth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, USAManila Observatory, Ateneo de Manila University, Quezon City, PhilippinesFaculty of Civil and Environmental Engineering, ITB, JL. Ganesha No.10, Bandung, IndonesiaSchool of Environment, Nanjing University, Nanjing, ChinaCenter for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, IndiaDepartment of Architecture, Massachusetts Institute of Technology, Cambridge, MA, USAUNIDEF (CITEDEF-CONICET) Juan B. de la Salle 4397 – B1603ALO Villa Martelli, Buenos Aires, ArgentinaDepartment of Chemistry, University of Dhaka, Dhaka, BangladeshCooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USADepartment of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, IsraelCenter for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, IndiaCenter for Global Change Science, Massachusetts Institute of Technology, Cambridge, MA, USARollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, USACenter for Earth System Science, Tsinghua University, Beijing, ChinaCenter for Earth System Science, Tsinghua University, Beijing, ChinaSchool of Population and Public Health, University of British Columbia, Vancouver, British Columbia, CanadaHealth Effects Institute, 101 Federal Street Suite 500, Boston, MA, USADepartment of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, CanadaRollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, USADepartment of Physics and Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MA, USADepartment of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, IsraelDepartment of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, CanadaHarvard-Smithsonian Center for Astrophysics, Cambridge, MA, USAThe Surface PARTiculate mAtter Network (SPARTAN) is a long-term project that includes characterization of chemical and physical attributes of aerosols from filter samples collected worldwide. This paper discusses the ongoing efforts of SPARTAN to define and quantify major ions and trace metals found in fine particulate matter (PM<sub>2.5</sub>). Our methods infer the spatial and temporal variability of PM<sub>2.5</sub> in a cost-effective manner. Gravimetrically weighed filters represent multi-day averages of PM<sub>2.5</sub>, with a collocated nephelometer sampling air continuously. SPARTAN instruments are paired with AErosol RObotic NETwork (AERONET) sun photometers to better understand the relationship between ground-level PM<sub>2.5</sub> and columnar aerosol optical depth (AOD).<br><br>We have examined the chemical composition of PM<sub>2.5</sub> at 12 globally dispersed, densely populated urban locations and a site at Mammoth Cave (US) National Park used as a background comparison. So far, each SPARTAN location has been active between the years 2013 and 2016 over periods of 2–26 months, with an average period of 12 months per site. These sites have collectively gathered over 10 years of quality aerosol data. The major PM<sub>2.5</sub> constituents across all sites (relative contribution ± SD) are ammoniated sulfate (20 % ± 11 %), crustal material (13.4 % ± 9.9 %), equivalent black carbon (11.9 % ± 8.4 %), ammonium nitrate (4.7 % ± 3.0 %), sea salt (2.3 % ± 1.6 %), trace element oxides (1.0 % ± 1.1 %), water (7.2 % ± 3.3 %) at 35 % RH, and residual matter (40 % ± 24 %).<br><br>Analysis of filter samples reveals that several PM<sub>2.5</sub> chemical components varied by more than an order of magnitude between sites. Ammoniated sulfate ranges from 1.1 µg m<sup>−3</sup> (Buenos Aires, Argentina) to 17 µg m<sup>−3</sup> (Kanpur, India in the dry season). Ammonium nitrate ranged from 0.2 µg m<sup>−3</sup> (Mammoth Cave, in summer) to 6.8 µg m<sup>−3</sup> (Kanpur, dry season). Equivalent black carbon ranged from 0.7 µg m<sup>−3</sup> (Mammoth Cave) to over 8 µg m<sup>−3</sup> (Dhaka, Bangladesh and Kanpur, India). Comparison of SPARTAN vs. coincident measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network at Mammoth Cave yielded a high degree of consistency for daily PM<sub>2.5</sub> (<i>r</i><sup>2</sup> = 0.76, slope = 1.12), daily sulfate (<i>r</i><sup>2</sup> = 0.86, slope = 1.03), and mean fractions of all major PM<sub>2.5</sub> components (within 6 %). Major ions generally agree well with previous studies at the same urban locations (e.g. sulfate fractions agree within 4 % for 8 out of 11 collocation comparisons). Enhanced anthropogenic dust fractions in large urban areas (e.g. Singapore, Kanpur, Hanoi, and Dhaka) are apparent from high Zn : Al ratios.<br><br>The expected water contribution to aerosols is calculated via the hygroscopicity parameter <i>κ</i><sub>v</sub> for each filter. Mean aggregate values ranged from 0.15 (Ilorin) to 0.28 (Rehovot). The all-site parameter mean is 0.20 ± 0.04. Chemical composition and water retention in each filter measurement allows inference of hourly PM<sub>2.5</sub> at 35 % relative humidity by merging with nephelometer measurements. These hourly PM<sub>2.5</sub> estimates compare favourably with a beta attenuation monitor (MetOne) at the nearby US embassy in Beijing, with a coefficient of variation <i>r</i><sup>2</sup> = 0.67 (<i>n</i> = 3167), compared to <i>r</i><sup>2</sup> = 0.62 when <i>κ</i><sub>v</sub> was not considered. SPARTAN continues to provide an open-access database of PM<sub>2.5</sub> compositional filter information and hourly mass collected from a global federation of instruments.https://www.atmos-chem-phys.net/16/9629/2016/acp-16-9629-2016.pdf |
spellingShingle | G. Snider C. L. Weagle K. K. Murdymootoo A. Ring Y. Ritchie E. Stone A. Walsh C. Akoshile N. X. Anh R. Balasubramanian J. Brook F. D. Qonitan J. Dong D. Griffith K. He B. N. Holben R. Kahn N. Lagrosas P. Lestari Z. Ma A. Misra L. K. Norford E. J. Quel A. Salam B. Schichtel L. Segev S. Tripathi C. Wang C. Yu Q. Zhang Y. Zhang M. Brauer A. Cohen M. D. Gibson Y. Liu J. V. Martins Y. Rudich R. V. Martin R. V. Martin R. V. Martin Variation in global chemical composition of PM<sub>2.5</sub>: emerging results from SPARTAN Atmospheric Chemistry and Physics |
title | Variation in global chemical composition of PM<sub>2.5</sub>:
emerging results from SPARTAN |
title_full | Variation in global chemical composition of PM<sub>2.5</sub>:
emerging results from SPARTAN |
title_fullStr | Variation in global chemical composition of PM<sub>2.5</sub>:
emerging results from SPARTAN |
title_full_unstemmed | Variation in global chemical composition of PM<sub>2.5</sub>:
emerging results from SPARTAN |
title_short | Variation in global chemical composition of PM<sub>2.5</sub>:
emerging results from SPARTAN |
title_sort | variation in global chemical composition of pm sub 2 5 sub emerging results from spartan |
url | https://www.atmos-chem-phys.net/16/9629/2016/acp-16-9629-2016.pdf |
work_keys_str_mv | AT gsnider variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT clweagle variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT kkmurdymootoo variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT aring variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT yritchie variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT estone variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT awalsh variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT cakoshile variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT nxanh variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT rbalasubramanian variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT jbrook variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT fdqonitan variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT jdong variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT dgriffith variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT khe variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT bnholben variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT rkahn variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT nlagrosas variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT plestari variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT zma variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT amisra variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT lknorford variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT ejquel variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT asalam variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT bschichtel variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT lsegev variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT stripathi variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT cwang variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT cyu variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT qzhang variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT yzhang variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT mbrauer variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT acohen variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT mdgibson variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT yliu variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT jvmartins variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT yrudich variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT rvmartin variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT rvmartin variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan AT rvmartin variationinglobalchemicalcompositionofpmsub25subemergingresultsfromspartan |