High-Temperature Superconductivity in the Lanthanide Hydrides at Extreme Pressures

Hydrogen-rich superhydrides are promising high-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>c</mi></msub></semantics></math></inline-formula>...

Full description

Bibliographic Details
Main Authors: Yao Wei, Francesco Macheda, Zelong Zhao, Terence Tse, Evgeny Plekhanov, Nicola Bonini, Cedric Weber
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/2/874
_version_ 1797495965292167168
author Yao Wei
Francesco Macheda
Zelong Zhao
Terence Tse
Evgeny Plekhanov
Nicola Bonini
Cedric Weber
author_facet Yao Wei
Francesco Macheda
Zelong Zhao
Terence Tse
Evgeny Plekhanov
Nicola Bonini
Cedric Weber
author_sort Yao Wei
collection DOAJ
description Hydrogen-rich superhydrides are promising high-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>c</mi></msub></semantics></math></inline-formula> superconductors, with superconductivity experimentally observed near room temperature, as shown in recently discovered lanthanide superhydrides at very high pressures, e.g., LaH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>10</mn></msub></semantics></math></inline-formula> at 170 GPa and CeH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>9</mn></msub></semantics></math></inline-formula> at 150 GPa. Superconductivity is believed to be closely related to the high vibrational modes of the bound hydrogen ions. Here, we studied the limit of extreme pressures (above 200 GPa) where lanthanide hydrides with large hydrogen content have been reported. We focused on LaH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>16</mn></msub></semantics></math></inline-formula> and CeH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>16</mn></msub></semantics></math></inline-formula>, two prototype candidates for achieving a large electronic contribution from hydrogen in the electron–phonon coupling. In this work, we propose a first-principles calculation platform with the inclusion of many-body corrections to evaluate the detailed physical properties of the Ce–H and La–H systems and to understand the structure, stability, and superconductivity of these systems at ultra-high pressure. We provide a practical approach to further investigate conventional superconductivity in hydrogen-rich superhydrides. We report that density functional theory provides accurate structure and phonon frequencies, but many-body corrections lead to an increase of the critical temperature, which is associated with the spectral weight transfer of the f-states.
first_indexed 2024-03-10T01:57:56Z
format Article
id doaj.art-7fc618cbb8ec458e86e3b44210791484
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-10T01:57:56Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-7fc618cbb8ec458e86e3b442107914842023-11-23T12:54:22ZengMDPI AGApplied Sciences2076-34172022-01-0112287410.3390/app12020874High-Temperature Superconductivity in the Lanthanide Hydrides at Extreme PressuresYao Wei0Francesco Macheda1Zelong Zhao2Terence Tse3Evgeny Plekhanov4Nicola Bonini5Cedric Weber6Theory and Simulation of Condensed Matter (TSCM), King’s College London, The Strand, London WC2R 2LS, UKTheory and Simulation of Condensed Matter (TSCM), King’s College London, The Strand, London WC2R 2LS, UKTheory and Simulation of Condensed Matter (TSCM), King’s College London, The Strand, London WC2R 2LS, UKTheory and Simulation of Condensed Matter (TSCM), King’s College London, The Strand, London WC2R 2LS, UKTheory and Simulation of Condensed Matter (TSCM), King’s College London, The Strand, London WC2R 2LS, UKTheory and Simulation of Condensed Matter (TSCM), King’s College London, The Strand, London WC2R 2LS, UKTheory and Simulation of Condensed Matter (TSCM), King’s College London, The Strand, London WC2R 2LS, UKHydrogen-rich superhydrides are promising high-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>c</mi></msub></semantics></math></inline-formula> superconductors, with superconductivity experimentally observed near room temperature, as shown in recently discovered lanthanide superhydrides at very high pressures, e.g., LaH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>10</mn></msub></semantics></math></inline-formula> at 170 GPa and CeH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>9</mn></msub></semantics></math></inline-formula> at 150 GPa. Superconductivity is believed to be closely related to the high vibrational modes of the bound hydrogen ions. Here, we studied the limit of extreme pressures (above 200 GPa) where lanthanide hydrides with large hydrogen content have been reported. We focused on LaH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>16</mn></msub></semantics></math></inline-formula> and CeH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>16</mn></msub></semantics></math></inline-formula>, two prototype candidates for achieving a large electronic contribution from hydrogen in the electron–phonon coupling. In this work, we propose a first-principles calculation platform with the inclusion of many-body corrections to evaluate the detailed physical properties of the Ce–H and La–H systems and to understand the structure, stability, and superconductivity of these systems at ultra-high pressure. We provide a practical approach to further investigate conventional superconductivity in hydrogen-rich superhydrides. We report that density functional theory provides accurate structure and phonon frequencies, but many-body corrections lead to an increase of the critical temperature, which is associated with the spectral weight transfer of the f-states.https://www.mdpi.com/2076-3417/12/2/874superconductivityelectronic interactionshigh pressure
spellingShingle Yao Wei
Francesco Macheda
Zelong Zhao
Terence Tse
Evgeny Plekhanov
Nicola Bonini
Cedric Weber
High-Temperature Superconductivity in the Lanthanide Hydrides at Extreme Pressures
Applied Sciences
superconductivity
electronic interactions
high pressure
title High-Temperature Superconductivity in the Lanthanide Hydrides at Extreme Pressures
title_full High-Temperature Superconductivity in the Lanthanide Hydrides at Extreme Pressures
title_fullStr High-Temperature Superconductivity in the Lanthanide Hydrides at Extreme Pressures
title_full_unstemmed High-Temperature Superconductivity in the Lanthanide Hydrides at Extreme Pressures
title_short High-Temperature Superconductivity in the Lanthanide Hydrides at Extreme Pressures
title_sort high temperature superconductivity in the lanthanide hydrides at extreme pressures
topic superconductivity
electronic interactions
high pressure
url https://www.mdpi.com/2076-3417/12/2/874
work_keys_str_mv AT yaowei hightemperaturesuperconductivityinthelanthanidehydridesatextremepressures
AT francescomacheda hightemperaturesuperconductivityinthelanthanidehydridesatextremepressures
AT zelongzhao hightemperaturesuperconductivityinthelanthanidehydridesatextremepressures
AT terencetse hightemperaturesuperconductivityinthelanthanidehydridesatextremepressures
AT evgenyplekhanov hightemperaturesuperconductivityinthelanthanidehydridesatextremepressures
AT nicolabonini hightemperaturesuperconductivityinthelanthanidehydridesatextremepressures
AT cedricweber hightemperaturesuperconductivityinthelanthanidehydridesatextremepressures