Updates on the determination of $$\vert V_{cb} \vert ,$$ | V cb | , $$R(D^{*})$$ R ( D ∗ ) and $$\vert V_{ub} \vert /\vert V_{cb} \vert $$ | V ub | / | V cb |

Abstract We present an updated determination of the values of $$\vert V_{cb} \vert ,$$ | V cb | , $$R(D^*)$$ R ( D ∗ ) and $$\vert V_{ub} \vert /\vert V_{cb} \vert $$ | V ub | / | V cb | based on the new data on semileptonic $$B \rightarrow D^* \ell \nu _\ell $$ B → D ∗ ℓ ν ℓ decays by the Belle and...

Full description

Bibliographic Details
Main Authors: G. Martinelli, S. Simula, L. Vittorio
Format: Article
Language:English
Published: SpringerOpen 2024-04-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-024-12742-5
_version_ 1797199270477037568
author G. Martinelli
S. Simula
L. Vittorio
author_facet G. Martinelli
S. Simula
L. Vittorio
author_sort G. Martinelli
collection DOAJ
description Abstract We present an updated determination of the values of $$\vert V_{cb} \vert ,$$ | V cb | , $$R(D^*)$$ R ( D ∗ ) and $$\vert V_{ub} \vert /\vert V_{cb} \vert $$ | V ub | / | V cb | based on the new data on semileptonic $$B \rightarrow D^* \ell \nu _\ell $$ B → D ∗ ℓ ν ℓ decays by the Belle and Belle-II Collaborations and on the recent theoretical progress in the calculation of the form factors relevant for semileptonic $$B \rightarrow D^* \ell \nu _\ell $$ B → D ∗ ℓ ν ℓ and $$B_s \rightarrow K \ell \nu _\ell $$ B s → K ℓ ν ℓ decays. In particular we present results derived by applying either the Dispersive Matrix (DM) method of Di Carlo et al. (Phys Rev D 104:054502, 2021), Martinelli et al. (Phys Rev D 104:094512, 2021), Martinelli et al. (Phys Rev D 105:034503, 2022), Martinelli et al. (Eur Phys J C 82:1083, 2022), Martinelli et al. (JHEP 08:022, 2022) and Martinelli et al. (Phys Rev D 106:093002, 2022) or the more standard Boyd–Grinstein–Lebed (BGL) (Boyd et al. in Phys Rev D 56:6895, 1997) approach to the most recent values of the form factors determined in lattice QCD. Using all the available lattice results for the form factors from the DM method we get the theoretical value $$R^{\textrm{th}}(D^*) = 0.262 \pm 0.009$$ R th ( D ∗ ) = 0.262 ± 0.009 and we extract from a bin-per-bin analysis of the experimental data the value $$\vert V_{cb} \vert = (39.92 \pm 0.64) \cdot 10^{-3}.$$ | V cb | = ( 39.92 ± 0.64 ) · 10 - 3 . Our result for $$R(D^*)$$ R ( D ∗ ) is consistent with the latest experimental world average $$R^{\textrm{exp}}(D^*) = 0.284 \pm 0.012$$ R exp ( D ∗ ) = 0.284 ± 0.012 (HFLAV Collaboration in Preliminary average of R(D) and $$R(D^*)$$ R ( D ∗ ) as for Summer 2023. See https://hflav-eos.web.cern.ch/hflav-eos/semi/summer23/html/RDsDsstar/RDRDs.html ) at the $$\simeq 1.5\,\sigma $$ ≃ 1.5 σ level. Our value for $$\vert V_{cb} \vert $$ | V cb | is compatible with the latest inclusive determinations $$\vert V_{cb} \vert ^{\textrm{incl}} = (41.97 \pm 0.48) \cdot 10^{-3}$$ | V cb | incl = ( 41.97 ± 0.48 ) · 10 - 3 (Finauri and Gambino in The $$q^2$$ q 2 moments in inclusive semileptonic B decays. arXiv:2310.20324 ) and $$\vert V_{cb} \vert ^{\textrm{incl}} = (41.69\pm 0.63) \cdot 10^{-3}$$ | V cb | incl = ( 41.69 ± 0.63 ) · 10 - 3 (Bernlochner et al. in JHEP 10:068, 2022) within $$\simeq 2.6$$ ≃ 2.6 and $$\simeq 2.0$$ ≃ 2.0 standard deviations, respectively. From a reappraisal of the calculations of $$\vert V_{ub} \vert / \vert V_{cb} \vert ,$$ | V ub | / | V cb | , we also obtain $$\vert V_{ub} \vert / \vert V_{cb} \vert = 0.087\pm 0.009$$ | V ub | / | V cb | = 0.087 ± 0.009 in good agreement with the result $$\vert V_{ub} \vert / \vert V_{cb} \vert = 0.0844\pm 0.0056$$ | V ub | / | V cb | = 0.0844 ± 0.0056 from the latest FLAG review (Flavour Lattice Averaging Group (FLAG) Collaboration in Phys J C 82:869, 2022).
first_indexed 2024-04-24T07:13:05Z
format Article
id doaj.art-7fd8cb4695304e80aa54eb45c07737f3
institution Directory Open Access Journal
issn 1434-6052
language English
last_indexed 2024-04-24T07:13:05Z
publishDate 2024-04-01
publisher SpringerOpen
record_format Article
series European Physical Journal C: Particles and Fields
spelling doaj.art-7fd8cb4695304e80aa54eb45c07737f32024-04-21T11:28:01ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60522024-04-0184412110.1140/epjc/s10052-024-12742-5Updates on the determination of $$\vert V_{cb} \vert ,$$ | V cb | , $$R(D^{*})$$ R ( D ∗ ) and $$\vert V_{ub} \vert /\vert V_{cb} \vert $$ | V ub | / | V cb |G. Martinelli0S. Simula1L. Vittorio2Physics Department, INFN Sezione di Roma La SapienzaIstituto Nazionale di Fisica Nucleare, Sezione di Roma TreLAPTh, Université Savoie Mont-Blanc and CNRSAbstract We present an updated determination of the values of $$\vert V_{cb} \vert ,$$ | V cb | , $$R(D^*)$$ R ( D ∗ ) and $$\vert V_{ub} \vert /\vert V_{cb} \vert $$ | V ub | / | V cb | based on the new data on semileptonic $$B \rightarrow D^* \ell \nu _\ell $$ B → D ∗ ℓ ν ℓ decays by the Belle and Belle-II Collaborations and on the recent theoretical progress in the calculation of the form factors relevant for semileptonic $$B \rightarrow D^* \ell \nu _\ell $$ B → D ∗ ℓ ν ℓ and $$B_s \rightarrow K \ell \nu _\ell $$ B s → K ℓ ν ℓ decays. In particular we present results derived by applying either the Dispersive Matrix (DM) method of Di Carlo et al. (Phys Rev D 104:054502, 2021), Martinelli et al. (Phys Rev D 104:094512, 2021), Martinelli et al. (Phys Rev D 105:034503, 2022), Martinelli et al. (Eur Phys J C 82:1083, 2022), Martinelli et al. (JHEP 08:022, 2022) and Martinelli et al. (Phys Rev D 106:093002, 2022) or the more standard Boyd–Grinstein–Lebed (BGL) (Boyd et al. in Phys Rev D 56:6895, 1997) approach to the most recent values of the form factors determined in lattice QCD. Using all the available lattice results for the form factors from the DM method we get the theoretical value $$R^{\textrm{th}}(D^*) = 0.262 \pm 0.009$$ R th ( D ∗ ) = 0.262 ± 0.009 and we extract from a bin-per-bin analysis of the experimental data the value $$\vert V_{cb} \vert = (39.92 \pm 0.64) \cdot 10^{-3}.$$ | V cb | = ( 39.92 ± 0.64 ) · 10 - 3 . Our result for $$R(D^*)$$ R ( D ∗ ) is consistent with the latest experimental world average $$R^{\textrm{exp}}(D^*) = 0.284 \pm 0.012$$ R exp ( D ∗ ) = 0.284 ± 0.012 (HFLAV Collaboration in Preliminary average of R(D) and $$R(D^*)$$ R ( D ∗ ) as for Summer 2023. See https://hflav-eos.web.cern.ch/hflav-eos/semi/summer23/html/RDsDsstar/RDRDs.html ) at the $$\simeq 1.5\,\sigma $$ ≃ 1.5 σ level. Our value for $$\vert V_{cb} \vert $$ | V cb | is compatible with the latest inclusive determinations $$\vert V_{cb} \vert ^{\textrm{incl}} = (41.97 \pm 0.48) \cdot 10^{-3}$$ | V cb | incl = ( 41.97 ± 0.48 ) · 10 - 3 (Finauri and Gambino in The $$q^2$$ q 2 moments in inclusive semileptonic B decays. arXiv:2310.20324 ) and $$\vert V_{cb} \vert ^{\textrm{incl}} = (41.69\pm 0.63) \cdot 10^{-3}$$ | V cb | incl = ( 41.69 ± 0.63 ) · 10 - 3 (Bernlochner et al. in JHEP 10:068, 2022) within $$\simeq 2.6$$ ≃ 2.6 and $$\simeq 2.0$$ ≃ 2.0 standard deviations, respectively. From a reappraisal of the calculations of $$\vert V_{ub} \vert / \vert V_{cb} \vert ,$$ | V ub | / | V cb | , we also obtain $$\vert V_{ub} \vert / \vert V_{cb} \vert = 0.087\pm 0.009$$ | V ub | / | V cb | = 0.087 ± 0.009 in good agreement with the result $$\vert V_{ub} \vert / \vert V_{cb} \vert = 0.0844\pm 0.0056$$ | V ub | / | V cb | = 0.0844 ± 0.0056 from the latest FLAG review (Flavour Lattice Averaging Group (FLAG) Collaboration in Phys J C 82:869, 2022).https://doi.org/10.1140/epjc/s10052-024-12742-5
spellingShingle G. Martinelli
S. Simula
L. Vittorio
Updates on the determination of $$\vert V_{cb} \vert ,$$ | V cb | , $$R(D^{*})$$ R ( D ∗ ) and $$\vert V_{ub} \vert /\vert V_{cb} \vert $$ | V ub | / | V cb |
European Physical Journal C: Particles and Fields
title Updates on the determination of $$\vert V_{cb} \vert ,$$ | V cb | , $$R(D^{*})$$ R ( D ∗ ) and $$\vert V_{ub} \vert /\vert V_{cb} \vert $$ | V ub | / | V cb |
title_full Updates on the determination of $$\vert V_{cb} \vert ,$$ | V cb | , $$R(D^{*})$$ R ( D ∗ ) and $$\vert V_{ub} \vert /\vert V_{cb} \vert $$ | V ub | / | V cb |
title_fullStr Updates on the determination of $$\vert V_{cb} \vert ,$$ | V cb | , $$R(D^{*})$$ R ( D ∗ ) and $$\vert V_{ub} \vert /\vert V_{cb} \vert $$ | V ub | / | V cb |
title_full_unstemmed Updates on the determination of $$\vert V_{cb} \vert ,$$ | V cb | , $$R(D^{*})$$ R ( D ∗ ) and $$\vert V_{ub} \vert /\vert V_{cb} \vert $$ | V ub | / | V cb |
title_short Updates on the determination of $$\vert V_{cb} \vert ,$$ | V cb | , $$R(D^{*})$$ R ( D ∗ ) and $$\vert V_{ub} \vert /\vert V_{cb} \vert $$ | V ub | / | V cb |
title_sort updates on the determination of vert v cb vert v cb r d r d ∗ and vert v ub vert vert v cb vert v ub v cb
url https://doi.org/10.1140/epjc/s10052-024-12742-5
work_keys_str_mv AT gmartinelli updatesonthedeterminationofvertvcbvertvcbrdrdandvertvubvertvertvcbvertvubvcb
AT ssimula updatesonthedeterminationofvertvcbvertvcbrdrdandvertvubvertvertvcbvertvubvcb
AT lvittorio updatesonthedeterminationofvertvcbvertvcbrdrdandvertvubvertvertvcbvertvubvcb