Estudio de variables que influyen en la deserción de estudiantes universitarios de primer año, mediante minería de datos
El objetivo de esta investigación fue analizar la deserción de los estudiantes mediante técnicas de minería de datos y obtener un modelo que fuese capaz de clasificar estudiantes desertores a partir de los datos socioeconómicos y académicos de los estudiantes de carreras de pregrado en la Universida...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | Spanish |
Published: |
Universidad Científica del Perú
2016-06-01
|
Series: | Ciencia Amazónica (Iquitos) |
Subjects: | |
Online Access: | http://www.ojs.ucp.edu.pe/index.php/cienciaamazonica/article/view/110 |
_version_ | 1811333282290204672 |
---|---|
author | Christian Zarria Torres Christian Arce Ramos Jaime Lam Moraga |
author_facet | Christian Zarria Torres Christian Arce Ramos Jaime Lam Moraga |
author_sort | Christian Zarria Torres |
collection | DOAJ |
description | El objetivo de esta investigación fue analizar la deserción de los estudiantes mediante técnicas de minería de datos y obtener un modelo que fuese capaz de clasificar estudiantes desertores a partir de los datos socioeconómicos y académicos de los estudiantes de carreras de pregrado en la Universidad Arturo Prat, Chile. Para el desarrollo de este proyecto se utilizó CRISP-DM como metodología para guiar las etapas del proyecto y se analizaron tres diferentes modelos de clasificación: árboles de decisión, métodos bayesianos y redes neuronales, con el fin de evaluar su comportamiento, encontrándose que Random Forest es el algoritmo de mejor desempeño general, con un 88,9% de exactitud, mientras que el algoritmo Naive Bayes resulto ser el más adecuado para dar respuesta a los objetivos del negocio, dados los niveles de sensibilidad alcanzados. Mediante los experimentos realizados se determinó que las variables académicas de ingreso de los estudiantes no resultan significativas para explicar la deserción de primer año. Con estos resultados, la Universidad podrá generar mejoras en los procesos críticos y en las variables que pudiesen intervenirse, haciendo más eficiente su gestión y mejorando el bienestar del estudiante, y por ende, de la comunidad en la cual se encuentra inmersa. |
first_indexed | 2024-04-13T16:50:06Z |
format | Article |
id | doaj.art-7fdab324d439473ea3ce4b8289ace5e3 |
institution | Directory Open Access Journal |
issn | 2221-5948 2222-7431 |
language | Spanish |
last_indexed | 2024-04-13T16:50:06Z |
publishDate | 2016-06-01 |
publisher | Universidad Científica del Perú |
record_format | Article |
series | Ciencia Amazónica (Iquitos) |
spelling | doaj.art-7fdab324d439473ea3ce4b8289ace5e32022-12-22T02:38:58ZspaUniversidad Científica del PerúCiencia Amazónica (Iquitos)2221-59482222-74312016-06-0161738410.22386/ca.v6i1.110106Estudio de variables que influyen en la deserción de estudiantes universitarios de primer año, mediante minería de datosChristian Zarria Torres0Christian Arce Ramos1Jaime Lam Moraga2Universidad Arturo PratUniversidad Arturo PratUniversidad Arturo PratEl objetivo de esta investigación fue analizar la deserción de los estudiantes mediante técnicas de minería de datos y obtener un modelo que fuese capaz de clasificar estudiantes desertores a partir de los datos socioeconómicos y académicos de los estudiantes de carreras de pregrado en la Universidad Arturo Prat, Chile. Para el desarrollo de este proyecto se utilizó CRISP-DM como metodología para guiar las etapas del proyecto y se analizaron tres diferentes modelos de clasificación: árboles de decisión, métodos bayesianos y redes neuronales, con el fin de evaluar su comportamiento, encontrándose que Random Forest es el algoritmo de mejor desempeño general, con un 88,9% de exactitud, mientras que el algoritmo Naive Bayes resulto ser el más adecuado para dar respuesta a los objetivos del negocio, dados los niveles de sensibilidad alcanzados. Mediante los experimentos realizados se determinó que las variables académicas de ingreso de los estudiantes no resultan significativas para explicar la deserción de primer año. Con estos resultados, la Universidad podrá generar mejoras en los procesos críticos y en las variables que pudiesen intervenirse, haciendo más eficiente su gestión y mejorando el bienestar del estudiante, y por ende, de la comunidad en la cual se encuentra inmersa.http://www.ojs.ucp.edu.pe/index.php/cienciaamazonica/article/view/110Deserciónminería de datosvariables académicas |
spellingShingle | Christian Zarria Torres Christian Arce Ramos Jaime Lam Moraga Estudio de variables que influyen en la deserción de estudiantes universitarios de primer año, mediante minería de datos Ciencia Amazónica (Iquitos) Deserción minería de datos variables académicas |
title | Estudio de variables que influyen en la deserción de estudiantes universitarios de primer año, mediante minería de datos |
title_full | Estudio de variables que influyen en la deserción de estudiantes universitarios de primer año, mediante minería de datos |
title_fullStr | Estudio de variables que influyen en la deserción de estudiantes universitarios de primer año, mediante minería de datos |
title_full_unstemmed | Estudio de variables que influyen en la deserción de estudiantes universitarios de primer año, mediante minería de datos |
title_short | Estudio de variables que influyen en la deserción de estudiantes universitarios de primer año, mediante minería de datos |
title_sort | estudio de variables que influyen en la desercion de estudiantes universitarios de primer ano mediante mineria de datos |
topic | Deserción minería de datos variables académicas |
url | http://www.ojs.ucp.edu.pe/index.php/cienciaamazonica/article/view/110 |
work_keys_str_mv | AT christianzarriatorres estudiodevariablesqueinfluyenenladeserciondeestudiantesuniversitariosdeprimeranomediantemineriadedatos AT christianarceramos estudiodevariablesqueinfluyenenladeserciondeestudiantesuniversitariosdeprimeranomediantemineriadedatos AT jaimelammoraga estudiodevariablesqueinfluyenenladeserciondeestudiantesuniversitariosdeprimeranomediantemineriadedatos |