Predictive Prospecting Using Remote Sensing in a Mountainous Terrestrial Volcanic Area, in Western Bangongco–Nujiang Mineralization Belt, Tibet

The Bangongco–Nujiang metallogenic belt of Tibet is a main suture zone in the Qinghai–Tibet Plateau, which is known as an important porphyry–epithermal–skarn Cu-polymetallic mineralization zone in China. The western part of the Bangongco–Nujiang metallogenic belt exposes several medium high-silica t...

Full description

Bibliographic Details
Main Authors: Longyang Bai, Jingjing Dai, Yang Song, Zhibo Liu, Wei Chen, Nan Wang, Changyu Wu
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/19/4851
Description
Summary:The Bangongco–Nujiang metallogenic belt of Tibet is a main suture zone in the Qinghai–Tibet Plateau, which is known as an important porphyry–epithermal–skarn Cu-polymetallic mineralization zone in China. The western part of the Bangongco–Nujiang metallogenic belt exposes several medium high-silica terrestrial alkaline volcanic rocks with strong alteration influenced by collision orogeny. Some research has shown that clues to mineralization such as malachite and gossan are found on the surface. However, volcanic rock areas with varied topography place a huge burden on geological investigation, and the existing research on predicting mineralization is relatively scarce. This paper describes the extraction of alteration mineral information based on medium spatial resolution and hyperspectral resolution images, establishing a spectral library of alteration minerals in this area. By analyzing radar data, digital elevation, and synthesis results of different spectral bands, we combine remote sensing with geographic information technology to establish crater markers. The extraction results from multisource and chemical exploration data are superimposed onto the analysis of mineralization characteristics and geological conditions so as to establish the mineralization signatures for terrestrial volcanic rock areas. Eighteen mineralization prospect areas were identified, which can provide technical support for future mineralization research in this belt.
ISSN:2072-4292