Nabla derivatives associated with nonlinear control systems on homogeneous time scales

The backward shift and nabla derivative operators, defined by the control system on homogeneous time scale, in vector spaces of one-forms and vector fields are introduced and some of their properties are proven. In particular the formulas for components of the backward shift and nabla derivative of...

Full description

Bibliographic Details
Main Authors: Zbigniew Bartosiewicz, Ülle Kotta, Tanel Mullari, Maris Tõnso, Ewa Pawluszewicz, Małgorzata Wyrwas
Format: Article
Language:English
Published: Vilnius University Press 2016-07-01
Series:Nonlinear Analysis
Subjects:
Online Access:http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/13460
_version_ 1818365250828763136
author Zbigniew Bartosiewicz
Ülle Kotta
Tanel Mullari
Maris Tõnso
Ewa Pawluszewicz
Małgorzata Wyrwas
author_facet Zbigniew Bartosiewicz
Ülle Kotta
Tanel Mullari
Maris Tõnso
Ewa Pawluszewicz
Małgorzata Wyrwas
author_sort Zbigniew Bartosiewicz
collection DOAJ
description The backward shift and nabla derivative operators, defined by the control system on homogeneous time scale, in vector spaces of one-forms and vector fields are introduced and some of their properties are proven. In particular the formulas for components of the backward shift and nabla derivative of an arbitrary vector field are presented.
first_indexed 2024-12-13T22:17:17Z
format Article
id doaj.art-8004b24f56734b539fcc8414ce61e91d
institution Directory Open Access Journal
issn 1392-5113
2335-8963
language English
last_indexed 2024-12-13T22:17:17Z
publishDate 2016-07-01
publisher Vilnius University Press
record_format Article
series Nonlinear Analysis
spelling doaj.art-8004b24f56734b539fcc8414ce61e91d2022-12-21T23:29:28ZengVilnius University PressNonlinear Analysis1392-51132335-89632016-07-0121410.15388/NA.2016.4.8Nabla derivatives associated with nonlinear control systems on homogeneous time scalesZbigniew Bartosiewicz0Ülle Kotta1Tanel Mullari2Maris Tõnso3Ewa Pawluszewicz4Małgorzata Wyrwas5Bialystok University of Technology, PolandTallinn University of Technology, EstoniaTallinn University of Technology, EstoniaTallinn University of Technology, EstoniaBialystok University of Technology, PolandBialystok University of Technology, PolandThe backward shift and nabla derivative operators, defined by the control system on homogeneous time scale, in vector spaces of one-forms and vector fields are introduced and some of their properties are proven. In particular the formulas for components of the backward shift and nabla derivative of an arbitrary vector field are presented.http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/13460nonlinear systemtime scalevector fieldone-formnabla and delta derivatives
spellingShingle Zbigniew Bartosiewicz
Ülle Kotta
Tanel Mullari
Maris Tõnso
Ewa Pawluszewicz
Małgorzata Wyrwas
Nabla derivatives associated with nonlinear control systems on homogeneous time scales
Nonlinear Analysis
nonlinear system
time scale
vector field
one-form
nabla and delta derivatives
title Nabla derivatives associated with nonlinear control systems on homogeneous time scales
title_full Nabla derivatives associated with nonlinear control systems on homogeneous time scales
title_fullStr Nabla derivatives associated with nonlinear control systems on homogeneous time scales
title_full_unstemmed Nabla derivatives associated with nonlinear control systems on homogeneous time scales
title_short Nabla derivatives associated with nonlinear control systems on homogeneous time scales
title_sort nabla derivatives associated with nonlinear control systems on homogeneous time scales
topic nonlinear system
time scale
vector field
one-form
nabla and delta derivatives
url http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/13460
work_keys_str_mv AT zbigniewbartosiewicz nabladerivativesassociatedwithnonlinearcontrolsystemsonhomogeneoustimescales
AT ullekotta nabladerivativesassociatedwithnonlinearcontrolsystemsonhomogeneoustimescales
AT tanelmullari nabladerivativesassociatedwithnonlinearcontrolsystemsonhomogeneoustimescales
AT maristonso nabladerivativesassociatedwithnonlinearcontrolsystemsonhomogeneoustimescales
AT ewapawluszewicz nabladerivativesassociatedwithnonlinearcontrolsystemsonhomogeneoustimescales
AT małgorzatawyrwas nabladerivativesassociatedwithnonlinearcontrolsystemsonhomogeneoustimescales