A stochastic model for estimating electric vehicle arrival at multi-charger forecourts

Many countries are observing significant growth rates in electric vehicle (EV) uptake, often backed by financial incentives or regulation and legislation. The availability of large multi-charger sites for rapid EV charging with an experience similar to conventional refuelling stations lowers the bar...

Full description

Bibliographic Details
Main Authors: F.M. Aboshady, I. Pisica, C.J. Axon
Format: Article
Language:English
Published: Elsevier 2022-11-01
Series:Energy Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352484722017292
Description
Summary:Many countries are observing significant growth rates in electric vehicle (EV) uptake, often backed by financial incentives or regulation and legislation. The availability of large multi-charger sites for rapid EV charging with an experience similar to conventional refuelling stations lowers the barrier to acceptance for drivers considering the switch to using an EV. The question arises about how to size such a facility at the design and planning stage, as well as accommodating growth in the number of EVs in daily use. One of the important factors is the vehicle arrival rate and the corresponding power and energy demand. EV charging is a function of several parameters, all of which are stochastic in nature, such as the vehicle daily travelled distance, charging start time and the required energy. To account for uncertainty in the parameters, a stochastic model has been designed to simulate realistic vehicle arrival rates. The model accounts for EVs coming from the site catchment area and opportunistic charging from passing traffic travelling on the major roads adjacent to the site, the seasonality of parameters, and charging at places other than the site (competitive charging). The model produced plausible EV arrival patterns for both local and passing traffic, and reproduced the characteristic power demand at the case study site. All estimates incorporate uncertainty, reflecting realistic variability of the important parameters. The model in independent of location, uses open-source data, and is structured flexibly, making it adaptable to new sites as part of the technical and business planning process.
ISSN:2352-4847