Superconductivity and Fermi Surface Studies of <i>β</i><sup>″</sup>-(BEDT-TTF)<sub>2</sub>[(H<sub>2</sub>O)(NH<sub>4</sub>)<sub>2</sub>Cr(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]·18-Crown-6

We report rf-penetration depth measurements of the quasi-2D organic superconductor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>β</mi><mo>″</mo></msup></...

Full description

Bibliographic Details
Main Authors: Brett Laramee, Raju Ghimire, David Graf, Lee Martin, Toby J. Blundell, Charles C. Agosta
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Magnetochemistry
Subjects:
Online Access:https://www.mdpi.com/2312-7481/9/3/64
_version_ 1827748970573594624
author Brett Laramee
Raju Ghimire
David Graf
Lee Martin
Toby J. Blundell
Charles C. Agosta
author_facet Brett Laramee
Raju Ghimire
David Graf
Lee Martin
Toby J. Blundell
Charles C. Agosta
author_sort Brett Laramee
collection DOAJ
description We report rf-penetration depth measurements of the quasi-2D organic superconductor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>β</mi><mo>″</mo></msup></mrow></semantics></math></inline-formula>-(BEDT-TTF)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>[(H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O)(NH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Cr(C<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>]·18-crown-6, which has the largest separation between consecutive conduction layers of any 2D organic metal with a single packing motif. Using a contactless tunnel diode oscillator measurement technique, we show the zero-field cooling dependence and field sweeps up to 28 T oriented at various angles with respect to the crystal conduction planes. When oriented parallel to the layers, the upper critical field, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mi mathvariant="normal">c</mi><mn>2</mn></mrow></msub><mo>=</mo><mn>7.6</mn></mrow></semantics></math></inline-formula> T, which is the calculated paramagnetic limit for this material. No signs of inhomogeneous superconductivity are seen, despite previous predictions. When oriented perpendicular to the layers, Shubnikov–de Haas oscillations are seen as low as 6 T, and from these we calculate Fermi surface parameters such as the superconducting coherence length and Dingle temperature. One remarkable result from our data is the high anisotropy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mrow><mi mathvariant="normal">c</mi><mn>2</mn></mrow></msub></semantics></math></inline-formula> in the parallel and perpendicular directions, due to an abnormally low <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mi mathvariant="normal">c</mi><mn>2</mn><mo>⊥</mo></mrow></msub><mo>=</mo><mn>0.4</mn></mrow></semantics></math></inline-formula> T. Such high anisotropy is rare in other organics and the origin of the smaller <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mrow><mi mathvariant="normal">c</mi><mn>2</mn><mo>⊥</mo></mrow></msub></semantics></math></inline-formula> may be a consequence of a lower effective mass.
first_indexed 2024-03-11T06:16:22Z
format Article
id doaj.art-8017a176e7884897b6884831ed71dc4f
institution Directory Open Access Journal
issn 2312-7481
language English
last_indexed 2024-03-11T06:16:22Z
publishDate 2023-02-01
publisher MDPI AG
record_format Article
series Magnetochemistry
spelling doaj.art-8017a176e7884897b6884831ed71dc4f2023-11-17T12:16:24ZengMDPI AGMagnetochemistry2312-74812023-02-01936410.3390/magnetochemistry9030064Superconductivity and Fermi Surface Studies of <i>β</i><sup>″</sup>-(BEDT-TTF)<sub>2</sub>[(H<sub>2</sub>O)(NH<sub>4</sub>)<sub>2</sub>Cr(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]·18-Crown-6Brett Laramee0Raju Ghimire1David Graf2Lee Martin3Toby J. Blundell4Charles C. Agosta5Department of Physics, Clark University, Worcester, MA 01610, USADepartment of Physics, Clark University, Worcester, MA 01610, USANational High Magnetic Field Lab, Tallahassee, FL 32310-3706, USASchool of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UKSchool of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UKDepartment of Physics, Clark University, Worcester, MA 01610, USAWe report rf-penetration depth measurements of the quasi-2D organic superconductor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>β</mi><mo>″</mo></msup></mrow></semantics></math></inline-formula>-(BEDT-TTF)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>[(H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O)(NH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Cr(C<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>]·18-crown-6, which has the largest separation between consecutive conduction layers of any 2D organic metal with a single packing motif. Using a contactless tunnel diode oscillator measurement technique, we show the zero-field cooling dependence and field sweeps up to 28 T oriented at various angles with respect to the crystal conduction planes. When oriented parallel to the layers, the upper critical field, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mi mathvariant="normal">c</mi><mn>2</mn></mrow></msub><mo>=</mo><mn>7.6</mn></mrow></semantics></math></inline-formula> T, which is the calculated paramagnetic limit for this material. No signs of inhomogeneous superconductivity are seen, despite previous predictions. When oriented perpendicular to the layers, Shubnikov–de Haas oscillations are seen as low as 6 T, and from these we calculate Fermi surface parameters such as the superconducting coherence length and Dingle temperature. One remarkable result from our data is the high anisotropy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mrow><mi mathvariant="normal">c</mi><mn>2</mn></mrow></msub></semantics></math></inline-formula> in the parallel and perpendicular directions, due to an abnormally low <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mi mathvariant="normal">c</mi><mn>2</mn><mo>⊥</mo></mrow></msub><mo>=</mo><mn>0.4</mn></mrow></semantics></math></inline-formula> T. Such high anisotropy is rare in other organics and the origin of the smaller <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mrow><mi mathvariant="normal">c</mi><mn>2</mn><mo>⊥</mo></mrow></msub></semantics></math></inline-formula> may be a consequence of a lower effective mass.https://www.mdpi.com/2312-7481/9/3/64organic conductors2D metalsanisotropic superconductivity
spellingShingle Brett Laramee
Raju Ghimire
David Graf
Lee Martin
Toby J. Blundell
Charles C. Agosta
Superconductivity and Fermi Surface Studies of <i>β</i><sup>″</sup>-(BEDT-TTF)<sub>2</sub>[(H<sub>2</sub>O)(NH<sub>4</sub>)<sub>2</sub>Cr(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]·18-Crown-6
Magnetochemistry
organic conductors
2D metals
anisotropic superconductivity
title Superconductivity and Fermi Surface Studies of <i>β</i><sup>″</sup>-(BEDT-TTF)<sub>2</sub>[(H<sub>2</sub>O)(NH<sub>4</sub>)<sub>2</sub>Cr(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]·18-Crown-6
title_full Superconductivity and Fermi Surface Studies of <i>β</i><sup>″</sup>-(BEDT-TTF)<sub>2</sub>[(H<sub>2</sub>O)(NH<sub>4</sub>)<sub>2</sub>Cr(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]·18-Crown-6
title_fullStr Superconductivity and Fermi Surface Studies of <i>β</i><sup>″</sup>-(BEDT-TTF)<sub>2</sub>[(H<sub>2</sub>O)(NH<sub>4</sub>)<sub>2</sub>Cr(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]·18-Crown-6
title_full_unstemmed Superconductivity and Fermi Surface Studies of <i>β</i><sup>″</sup>-(BEDT-TTF)<sub>2</sub>[(H<sub>2</sub>O)(NH<sub>4</sub>)<sub>2</sub>Cr(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]·18-Crown-6
title_short Superconductivity and Fermi Surface Studies of <i>β</i><sup>″</sup>-(BEDT-TTF)<sub>2</sub>[(H<sub>2</sub>O)(NH<sub>4</sub>)<sub>2</sub>Cr(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]·18-Crown-6
title_sort superconductivity and fermi surface studies of i β i sup sup bedt ttf sub 2 sub h sub 2 sub o nh sub 4 sub sub 2 sub cr c sub 2 sub o sub 4 sub sub 3 sub ·18 crown 6
topic organic conductors
2D metals
anisotropic superconductivity
url https://www.mdpi.com/2312-7481/9/3/64
work_keys_str_mv AT brettlaramee superconductivityandfermisurfacestudiesofibisupsupbedtttfsub2subhsub2subonhsub4subsub2subcrcsub2subosub4subsub3sub18crown6
AT rajughimire superconductivityandfermisurfacestudiesofibisupsupbedtttfsub2subhsub2subonhsub4subsub2subcrcsub2subosub4subsub3sub18crown6
AT davidgraf superconductivityandfermisurfacestudiesofibisupsupbedtttfsub2subhsub2subonhsub4subsub2subcrcsub2subosub4subsub3sub18crown6
AT leemartin superconductivityandfermisurfacestudiesofibisupsupbedtttfsub2subhsub2subonhsub4subsub2subcrcsub2subosub4subsub3sub18crown6
AT tobyjblundell superconductivityandfermisurfacestudiesofibisupsupbedtttfsub2subhsub2subonhsub4subsub2subcrcsub2subosub4subsub3sub18crown6
AT charlescagosta superconductivityandfermisurfacestudiesofibisupsupbedtttfsub2subhsub2subonhsub4subsub2subcrcsub2subosub4subsub3sub18crown6