New soliton solutions of modified (3+1)-D Wazwaz–Benjamin–Bona–Mahony and (2+1)-D cubic Klein–Gordon equations using first integral method

In this article, first integral method (FIM) is used to acquire the analytical solutions of (3+1)-D Wazwaz–Benjamin–Bona–Mahony and (2+1)-D cubic Klein–Gordon equation. New soliton solutions are obtained, such as solitons, cuspon, and periodic solutions. FIM is a direct method to acquire soliton sol...

Full description

Bibliographic Details
Main Authors: Javeed Shumaila, Imran Tayyab, Ahmad Hijaz, Tchier Fairouz, Zhao Yun-Hui
Format: Article
Language:English
Published: De Gruyter 2023-03-01
Series:Open Physics
Subjects:
Online Access:https://doi.org/10.1515/phys-2022-0229
_version_ 1797848654474641408
author Javeed Shumaila
Imran Tayyab
Ahmad Hijaz
Tchier Fairouz
Zhao Yun-Hui
author_facet Javeed Shumaila
Imran Tayyab
Ahmad Hijaz
Tchier Fairouz
Zhao Yun-Hui
author_sort Javeed Shumaila
collection DOAJ
description In this article, first integral method (FIM) is used to acquire the analytical solutions of (3+1)-D Wazwaz–Benjamin–Bona–Mahony and (2+1)-D cubic Klein–Gordon equation. New soliton solutions are obtained, such as solitons, cuspon, and periodic solutions. FIM is a direct method to acquire soliton solutions of nonlinear partial differential equations (PDEs). The proposed technique can be used for solving higher dimensional PDEs. FIM can be implemented to solve integrable and ion-integrable equations.
first_indexed 2024-04-09T18:30:58Z
format Article
id doaj.art-8018064e1c354488a1a4a4a7283a8c88
institution Directory Open Access Journal
issn 2391-5471
language English
last_indexed 2024-04-09T18:30:58Z
publishDate 2023-03-01
publisher De Gruyter
record_format Article
series Open Physics
spelling doaj.art-8018064e1c354488a1a4a4a7283a8c882023-04-11T17:07:19ZengDe GruyterOpen Physics2391-54712023-03-0121128273810.1515/phys-2022-0229New soliton solutions of modified (3+1)-D Wazwaz–Benjamin–Bona–Mahony and (2+1)-D cubic Klein–Gordon equations using first integral methodJaveed Shumaila0Imran Tayyab1Ahmad Hijaz2Tchier Fairouz3Zhao Yun-Hui4Department of Mathematics, COMSATS University, Islambad Campus, Islamabad, PakistanDepartment of Computer Science and Mathematics, Lebanese American University, Beirut, LebanonSection of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39,00186 Roma, ItalyDepartment of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiaSchool of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, ChinaIn this article, first integral method (FIM) is used to acquire the analytical solutions of (3+1)-D Wazwaz–Benjamin–Bona–Mahony and (2+1)-D cubic Klein–Gordon equation. New soliton solutions are obtained, such as solitons, cuspon, and periodic solutions. FIM is a direct method to acquire soliton solutions of nonlinear partial differential equations (PDEs). The proposed technique can be used for solving higher dimensional PDEs. FIM can be implemented to solve integrable and ion-integrable equations.https://doi.org/10.1515/phys-2022-0229first integral method(3+1)-d wbbm equation(2+1)-d cubic klein–gordon-equation
spellingShingle Javeed Shumaila
Imran Tayyab
Ahmad Hijaz
Tchier Fairouz
Zhao Yun-Hui
New soliton solutions of modified (3+1)-D Wazwaz–Benjamin–Bona–Mahony and (2+1)-D cubic Klein–Gordon equations using first integral method
Open Physics
first integral method
(3+1)-d wbbm equation
(2+1)-d cubic klein–gordon-equation
title New soliton solutions of modified (3+1)-D Wazwaz–Benjamin–Bona–Mahony and (2+1)-D cubic Klein–Gordon equations using first integral method
title_full New soliton solutions of modified (3+1)-D Wazwaz–Benjamin–Bona–Mahony and (2+1)-D cubic Klein–Gordon equations using first integral method
title_fullStr New soliton solutions of modified (3+1)-D Wazwaz–Benjamin–Bona–Mahony and (2+1)-D cubic Klein–Gordon equations using first integral method
title_full_unstemmed New soliton solutions of modified (3+1)-D Wazwaz–Benjamin–Bona–Mahony and (2+1)-D cubic Klein–Gordon equations using first integral method
title_short New soliton solutions of modified (3+1)-D Wazwaz–Benjamin–Bona–Mahony and (2+1)-D cubic Klein–Gordon equations using first integral method
title_sort new soliton solutions of modified 3 1 d wazwaz benjamin bona mahony and 2 1 d cubic klein gordon equations using first integral method
topic first integral method
(3+1)-d wbbm equation
(2+1)-d cubic klein–gordon-equation
url https://doi.org/10.1515/phys-2022-0229
work_keys_str_mv AT javeedshumaila newsolitonsolutionsofmodified31dwazwazbenjaminbonamahonyand21dcubickleingordonequationsusingfirstintegralmethod
AT imrantayyab newsolitonsolutionsofmodified31dwazwazbenjaminbonamahonyand21dcubickleingordonequationsusingfirstintegralmethod
AT ahmadhijaz newsolitonsolutionsofmodified31dwazwazbenjaminbonamahonyand21dcubickleingordonequationsusingfirstintegralmethod
AT tchierfairouz newsolitonsolutionsofmodified31dwazwazbenjaminbonamahonyand21dcubickleingordonequationsusingfirstintegralmethod
AT zhaoyunhui newsolitonsolutionsofmodified31dwazwazbenjaminbonamahonyand21dcubickleingordonequationsusingfirstintegralmethod