Trends and Non-Stationarity in Groundwater Level Changes in Rapidly Developing Indian Cities

In most of the Indian cities, around half of the urban water requirement is fulfilled by groundwater. Recently, seasonal urban droughts have been frequently witnessed globally, which adds more stress to groundwater systems. Excessive pumping and increasing demands in several Indian cities impose a h...

Full description

Bibliographic Details
Main Authors: Aadhityaa Mohanavelu, K. S. Kasiviswanathan, S. Mohanasundaram, Idhayachandhiran Ilampooranan, Jianxun He, Santosh M. Pingale, B.-S. Soundharajan, M. M. Diwan Mohaideen
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/12/11/3209
Description
Summary:In most of the Indian cities, around half of the urban water requirement is fulfilled by groundwater. Recently, seasonal urban droughts have been frequently witnessed globally, which adds more stress to groundwater systems. Excessive pumping and increasing demands in several Indian cities impose a high risk of running out of groundwater storage, which could potentially affect millions of lives in the future. In this paper, groundwater level changes have been comprehensively assessed for seven densely populated and rapidly growing secondary cities across India. Several statistical analyses were performed to detect the trends and non-stationarity in the groundwater level (GWL). Also, the influence of rainfall and land use/land cover changes (LULC) on the GWL was explored. The results suggest that overall, the groundwater level was found to vary between ±10 cm/year in the majority of the wells. Further, the non-stationarity analysis revealed a high impact of rainfall and LULC due to climate variability and anthropogenic activities respectively on the GWL change dynamics. Statistical correlation analysis showed evidence supporting that climate variability could potentially be a major component affecting the rainfall and groundwater recharge relationship. Additionally, from the LULC analysis, a decrease in the green cover area (R = 0.93) was found to have a higher correlation with decreasing groundwater level than that of urban area growth across seven rapidly developing cities.
ISSN:2073-4441