Bottom-up regulation of capelin, a keystone forage species.
The Northwest Atlantic marine ecosystem off Newfoundland and Labrador, Canada, has been commercially exploited for centuries. Although periodic declines in various important commercial fish stocks have been observed in this ecosystem, the most drastic changes took place in the early 1990s when the e...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3913657?pdf=render |
_version_ | 1818129115558969344 |
---|---|
author | Alejandro D Buren Mariano Koen-Alonso Pierre Pepin Fran Mowbray Brian Nakashima Garry Stenson Neil Ollerhead William A Montevecchi |
author_facet | Alejandro D Buren Mariano Koen-Alonso Pierre Pepin Fran Mowbray Brian Nakashima Garry Stenson Neil Ollerhead William A Montevecchi |
author_sort | Alejandro D Buren |
collection | DOAJ |
description | The Northwest Atlantic marine ecosystem off Newfoundland and Labrador, Canada, has been commercially exploited for centuries. Although periodic declines in various important commercial fish stocks have been observed in this ecosystem, the most drastic changes took place in the early 1990s when the ecosystem structure changed abruptly and has not returned to its previous configuration. In the Northwest Atlantic, food web dynamics are determined largely by capelin (Mallotus villosus), the focal forage species which links primary and secondary producers with the higher trophic levels. Notwithstanding the importance of capelin, the factors that influence its population dynamics have remained elusive. We found that a regime shift and ocean climate, acting via food availability, have discernible impacts on the regulation of this population. Capelin biomass and timing of spawning were well explained by a regime shift and seasonal sea ice dynamics, a key determinant of the pelagic spring bloom. Our findings are important for the development of ecosystem approaches to fisheries management and raise questions on the potential impacts of climate change on the structure and productivity of this marine ecosystem. |
first_indexed | 2024-12-11T07:44:01Z |
format | Article |
id | doaj.art-80246d06eaf7449abf4eb9f4b77e9c11 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-11T07:44:01Z |
publishDate | 2014-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-80246d06eaf7449abf4eb9f4b77e9c112022-12-22T01:15:30ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0192e8758910.1371/journal.pone.0087589Bottom-up regulation of capelin, a keystone forage species.Alejandro D BurenMariano Koen-AlonsoPierre PepinFran MowbrayBrian NakashimaGarry StensonNeil OllerheadWilliam A MontevecchiThe Northwest Atlantic marine ecosystem off Newfoundland and Labrador, Canada, has been commercially exploited for centuries. Although periodic declines in various important commercial fish stocks have been observed in this ecosystem, the most drastic changes took place in the early 1990s when the ecosystem structure changed abruptly and has not returned to its previous configuration. In the Northwest Atlantic, food web dynamics are determined largely by capelin (Mallotus villosus), the focal forage species which links primary and secondary producers with the higher trophic levels. Notwithstanding the importance of capelin, the factors that influence its population dynamics have remained elusive. We found that a regime shift and ocean climate, acting via food availability, have discernible impacts on the regulation of this population. Capelin biomass and timing of spawning were well explained by a regime shift and seasonal sea ice dynamics, a key determinant of the pelagic spring bloom. Our findings are important for the development of ecosystem approaches to fisheries management and raise questions on the potential impacts of climate change on the structure and productivity of this marine ecosystem.http://europepmc.org/articles/PMC3913657?pdf=render |
spellingShingle | Alejandro D Buren Mariano Koen-Alonso Pierre Pepin Fran Mowbray Brian Nakashima Garry Stenson Neil Ollerhead William A Montevecchi Bottom-up regulation of capelin, a keystone forage species. PLoS ONE |
title | Bottom-up regulation of capelin, a keystone forage species. |
title_full | Bottom-up regulation of capelin, a keystone forage species. |
title_fullStr | Bottom-up regulation of capelin, a keystone forage species. |
title_full_unstemmed | Bottom-up regulation of capelin, a keystone forage species. |
title_short | Bottom-up regulation of capelin, a keystone forage species. |
title_sort | bottom up regulation of capelin a keystone forage species |
url | http://europepmc.org/articles/PMC3913657?pdf=render |
work_keys_str_mv | AT alejandrodburen bottomupregulationofcapelinakeystoneforagespecies AT marianokoenalonso bottomupregulationofcapelinakeystoneforagespecies AT pierrepepin bottomupregulationofcapelinakeystoneforagespecies AT franmowbray bottomupregulationofcapelinakeystoneforagespecies AT briannakashima bottomupregulationofcapelinakeystoneforagespecies AT garrystenson bottomupregulationofcapelinakeystoneforagespecies AT neilollerhead bottomupregulationofcapelinakeystoneforagespecies AT williamamontevecchi bottomupregulationofcapelinakeystoneforagespecies |