Investigation of the Y Effect on the Microstructure Response and Radiation Hardening of PM V-4Cr-4Ti Alloys after Irradiation with D Ions

In the current work, an analysis of the effects of Y on the radiation hardening and microstructure response of a V-4Cr-4Ti alloy has been conducted after 30 keV D ion irradiation at room temperature using transmission electron microscopy (TEM) and nanoindentation. The results show that the formation...

Full description

Bibliographic Details
Main Authors: Yifan Zhang, Xiaoyuan Sun, Bing Ma, Jing Wang, Laima Luo, Yucheng Wu
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/13/3/541
Description
Summary:In the current work, an analysis of the effects of Y on the radiation hardening and microstructure response of a V-4Cr-4Ti alloy has been conducted after 30 keV D ion irradiation at room temperature using transmission electron microscopy (TEM) and nanoindentation. The results show that the formation of large Y<sub>2</sub>O<sub>3</sub> and small Y<sub>2</sub>V<sub>2</sub>O<sub>7</sub> nanoparticles was confirmed, indicating that the addition of Y reduces the amount of dissolved oxygen. The addition of Y has been shown to affect the radiation-induced dislocation loops, radiation hardening, and Ti-rich segregation of the V-4Cr-4Ti alloy. With the addition of Y, the mean size of the radiation-induced dislocation loop decreased, which may result from the strong sink strength of the nanoparticle/matrix interface, interactions between Y atoms and SIA clusters, and the strong binding energy of vacancy–oxygen pairs. Some particles with core–shell structures were observed after ion irradiation, where Ti-rich segregations at the nanoparticle/matrix interface were confirmed. These results indicate that Y might promote abnormal segregation. Possible causes for this include the lower interface energy at the particle/matrix interface and the interaction between oxygen and solute atoms.
ISSN:2075-4701