Summary: | In the current work, an analysis of the effects of Y on the radiation hardening and microstructure response of a V-4Cr-4Ti alloy has been conducted after 30 keV D ion irradiation at room temperature using transmission electron microscopy (TEM) and nanoindentation. The results show that the formation of large Y<sub>2</sub>O<sub>3</sub> and small Y<sub>2</sub>V<sub>2</sub>O<sub>7</sub> nanoparticles was confirmed, indicating that the addition of Y reduces the amount of dissolved oxygen. The addition of Y has been shown to affect the radiation-induced dislocation loops, radiation hardening, and Ti-rich segregation of the V-4Cr-4Ti alloy. With the addition of Y, the mean size of the radiation-induced dislocation loop decreased, which may result from the strong sink strength of the nanoparticle/matrix interface, interactions between Y atoms and SIA clusters, and the strong binding energy of vacancy–oxygen pairs. Some particles with core–shell structures were observed after ion irradiation, where Ti-rich segregations at the nanoparticle/matrix interface were confirmed. These results indicate that Y might promote abnormal segregation. Possible causes for this include the lower interface energy at the particle/matrix interface and the interaction between oxygen and solute atoms.
|