Global GNSS-RO Electron Density in the Lower Ionosphere

Lack of instrument sensitivity to low electron density (<i>N<sub>e</sub></i>) concentration makes it difficult to measure sharp <i>N<sub>e</sub></i> vertical gradients (four orders of magnitude over 30 km) in the <i>D/E</i>-region. A robust...

Full description

Bibliographic Details
Main Authors: Dong L. Wu, Daniel J. Emmons, Nimalan Swarnalingam
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/7/1577
_version_ 1797437925578768384
author Dong L. Wu
Daniel J. Emmons
Nimalan Swarnalingam
author_facet Dong L. Wu
Daniel J. Emmons
Nimalan Swarnalingam
author_sort Dong L. Wu
collection DOAJ
description Lack of instrument sensitivity to low electron density (<i>N<sub>e</sub></i>) concentration makes it difficult to measure sharp <i>N<sub>e</sub></i> vertical gradients (four orders of magnitude over 30 km) in the <i>D/E</i>-region. A robust algorithm is developed to retrieve global <i>D/E</i>-region <i>N<sub>e</sub></i> from the high-rate GNSS radio occultation (RO) data, to improve spatiotemporal coverage using recent SmallSat/CubeSat constellations. The new algorithm removes <i>F</i>-region contributions in the RO excess phase profile by fitting a linear function to the data below the <i>D</i>-region. The new GNSS-RO observations reveal many interesting features in the diurnal, seasonal, solar-cycle, and magnetic-field-dependent variations in the <i>N<sub>e</sub></i> morphology. While the <i>D/E</i>-region <i>N<sub>e</sub></i> is a function of solar zenith angle (χ), it exhibits strong latitudinal variations for the same χ with a distribution asymmetric about noon. In addition, large longitudinal variations are observed along the same magnetic field pitch angle. The summer midlatitude <i>N<sub>e</sub></i> and sporadic <i>E</i> (<i>E<sub>s</sub></i>) show a distribution similar to each other. The distribution of auroral electron precipitation correlates better with the pitch angle from the magnetosphere than from one at 100 km. Finally, a new <i>TEC</i> retrieval technique is developed for the high-rate RO data with a top reaching at least 120 km. For better characterization of the <i>E</i>- to <i>F</i>-transition in <i>N<sub>e</sub></i> and more accurate <i>TEC</i> retrievals, it is recommended to have all GNSS-RO acquisition routinely up to 220 km.
first_indexed 2024-03-09T11:28:34Z
format Article
id doaj.art-80406c16e0ec4397839016cee542da6f
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-09T11:28:34Z
publishDate 2022-03-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-80406c16e0ec4397839016cee542da6f2023-11-30T23:55:58ZengMDPI AGRemote Sensing2072-42922022-03-01147157710.3390/rs14071577Global GNSS-RO Electron Density in the Lower IonosphereDong L. Wu0Daniel J. Emmons1Nimalan Swarnalingam2NASA Goddard Space Flight Center, Greenbelt, MD 20771, USAThe Air Force Institute of Technology, Wright-Patterson Air Force Base, Dayton, OH 45433, USANASA Goddard Space Flight Center, Greenbelt, MD 20771, USALack of instrument sensitivity to low electron density (<i>N<sub>e</sub></i>) concentration makes it difficult to measure sharp <i>N<sub>e</sub></i> vertical gradients (four orders of magnitude over 30 km) in the <i>D/E</i>-region. A robust algorithm is developed to retrieve global <i>D/E</i>-region <i>N<sub>e</sub></i> from the high-rate GNSS radio occultation (RO) data, to improve spatiotemporal coverage using recent SmallSat/CubeSat constellations. The new algorithm removes <i>F</i>-region contributions in the RO excess phase profile by fitting a linear function to the data below the <i>D</i>-region. The new GNSS-RO observations reveal many interesting features in the diurnal, seasonal, solar-cycle, and magnetic-field-dependent variations in the <i>N<sub>e</sub></i> morphology. While the <i>D/E</i>-region <i>N<sub>e</sub></i> is a function of solar zenith angle (χ), it exhibits strong latitudinal variations for the same χ with a distribution asymmetric about noon. In addition, large longitudinal variations are observed along the same magnetic field pitch angle. The summer midlatitude <i>N<sub>e</sub></i> and sporadic <i>E</i> (<i>E<sub>s</sub></i>) show a distribution similar to each other. The distribution of auroral electron precipitation correlates better with the pitch angle from the magnetosphere than from one at 100 km. Finally, a new <i>TEC</i> retrieval technique is developed for the high-rate RO data with a top reaching at least 120 km. For better characterization of the <i>E</i>- to <i>F</i>-transition in <i>N<sub>e</sub></i> and more accurate <i>TEC</i> retrievals, it is recommended to have all GNSS-RO acquisition routinely up to 220 km.https://www.mdpi.com/2072-4292/14/7/1577GNSS radio occultation<i>D/E</i>-region ionosphereelectron densitytotal electron contentsporadic-Esatellite constellation
spellingShingle Dong L. Wu
Daniel J. Emmons
Nimalan Swarnalingam
Global GNSS-RO Electron Density in the Lower Ionosphere
Remote Sensing
GNSS radio occultation
<i>D/E</i>-region ionosphere
electron density
total electron content
sporadic-E
satellite constellation
title Global GNSS-RO Electron Density in the Lower Ionosphere
title_full Global GNSS-RO Electron Density in the Lower Ionosphere
title_fullStr Global GNSS-RO Electron Density in the Lower Ionosphere
title_full_unstemmed Global GNSS-RO Electron Density in the Lower Ionosphere
title_short Global GNSS-RO Electron Density in the Lower Ionosphere
title_sort global gnss ro electron density in the lower ionosphere
topic GNSS radio occultation
<i>D/E</i>-region ionosphere
electron density
total electron content
sporadic-E
satellite constellation
url https://www.mdpi.com/2072-4292/14/7/1577
work_keys_str_mv AT donglwu globalgnssroelectrondensityinthelowerionosphere
AT danieljemmons globalgnssroelectrondensityinthelowerionosphere
AT nimalanswarnalingam globalgnssroelectrondensityinthelowerionosphere